
PCB Pollution in the New Bedford, Massachusetts Area:

A Status Report

June 1982

grant weaver, environmental engineer

Massachusetts Coastal Zone Management

PCB POLLUTION IN THE NEW BEDFORD, MASSACHUSETTS AREA A STATUS REPORT

- June 1982 -

Commonwealth of Massachusetts

Edward J. King, Governor

Executive Office of Environmental Affairs

John A. Bewick, Secretary

Office of Coastal Zone Management
Richard F. Delaney, Director

							-
					•		
							-
							-
							-
							<u></u>
							_
							= -
						•	

Submitted to the Massachusetts New Bedford PCB Task Force

Thomas C. McMahon, Task Force Chairman

John A. Bewick, Secretary of Environmental Affairs

Edward J. King, Governor

Grant Weaver, Environmental Engineer
Massachusetts Coastal Zone Management

			~
			<u></u>
			-
			mage .
			-
			_
			-

ACKNOWLEDGEMENTS

The author is grateful for all the assistance received in the preparation of this report. Credit is due to the following individuals and organizations for their help in putting this document together.

Carol Rowan, Massachusetts Department of Environmental Quality Engineering Toxicologist, supplied me with the majority of health and environmental information presented in this report. Susan Santos' master's thesis was freely quoted in the sections on Aerovox and Cornell Dubilier. The support documentation provided by these individuals has been most appreciated.

Gerald Szal and Dr. Russel Isaac carefully reviewed the draft reports to provide a thorough factual and editorial critique. Lawrence McCavitt, Richard Tomczyk and Richard Chalpin similary reviewed the many drafts. Perhaps the most valuable assistance, that of providing technical, emotional and moral support, has been given by James Okun and Charles Bering of the U.S. Environmental Protection Agency. Ken Wood of the EPA also deserves acknowledgement for his assistance in the production and distribution of this report.

Several persons with the Massachusetts Department of Public Health have been extremely helpful in assisting in the PCB study of New Bedford. These people include Elise Comproni, Elaine Kreuger, Dr. John Cutler, Dr. Norman Telles and Brad Prenney.

Others who have assisted in the preparation of this report are listed in no particular order. Thanks to all: Noga Waldman, Denise Noel, Barbara Mann, Sheri Anthony, Richard Delaney and Gary Clayton of the Massachusetts Coastal Zone Management Program; Edward Reilly, Shelly Putnam and Mary Miller, all formally of CZM; Richard Nylen, Gregg Wilson, Bernice McIntyre and Dr. John Bewick of the Massachusetts Executive Office of Environmental Affairs; as well as Barbara Hogan and others of the New York State Department of Environmental Conservation.

A big thanks to Richard Peoples, a most knowledgable and pleasant chemist with the City of Bloomington, Indiana. EPA Region V personnel, especially Dr. Dana Davoli and Howard Zar deserve recognition as do Representative Roger "Sparky" Goyette, Jack Turner and the City of New Bedford, Massachusetts Maritime Academy and Dr. David Kan for providing free use of their vessel and Woods Hole Oceanographic Institute, Bridgewater State University (especially Dr. Yacek Sulanowski) and Southeastern Massachusetts University have all been involved in research efforts, the results of which they have freely Massachusetts Department of Environmental Quality Engineering, particulary Dr. Jack Delaney, Paul Anderson, Yee Cho and Gerry Monte have all participated in this study as have the Massachusetts Department of Marine Fisheries, especially Russell Ceurvells, and the Massachusetts Division of Law Enforcement. Dana Pederson and Robert Cutone of Camp Dresser and McKee, Inc. as well as Edward Wong and others of the EPA Lexington Laboratories have freely provided information and assisted in the data collection on which this report is based.

	,					**************************************
						_
						~ ~
						-
						Appendix .
						Marks to 100
						—

CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	2
What is a PCB? How are PCBs Measured?	2 5
HEALTH AND ENVIRONMENTAL EFFECTS OF PCBs	10
Human Health Effects Environmental Effects / Findings	12 15
LIMITS AND STANDARDS	18
THE NEW BEDFORD PCB PROBLEM	21
Aerovox Incorporated Cornell Dubilier Electronics Incorporated New Bedford Wastewater Treatment Plant New Bedford Municipal Landfill Sullivan's Ledge Other Suspected PCB Sources	29 32 35 41 42 43
CHRONOLOGY - New Bedford Area PCB Contamination and Control	45
CASE HISTORIES OF PCB POLLUTION	50
Waukegan Harbor, Illinois Bloomington, Indiana Upper Hudson River, New York	50 51 52
GLOSSARY - Index to abbreviations and acronyms	53
REFERENCES	55

					-, -,-
					*000_00000
					Table T
					~ -
					·
					٠
					*
					~~
					,-
					*
					-
					_
					,-,
					No.

TABLES

		Page
Table 1.	Typical Percentage Composition of Polychlorinated Biphenyl Products	4
Table 2.	Summary of Chronic Toxic Effects of PCBs	17
Table 3.	USFDA Limits on PCB Concentration in Foodstuffs	18
Table 4.	PCB Concentrations in New Bedford Area Finfishes	26
Table 5.	Summary of Blood Serum Test Results	28
Table 6.	New Bedford Wastewater Treatment Plant Analyses for PCBs in Wastewater	38
Table 7.	New Bedford Wastewater Treatment Plant Analyses for PCBs in Sludge	39
Table 8.	New Bedford Wastewater Treatment Plant Analyses for PCBs in Incinerator Ash	40
Table 9.	Historical Upland Dredge Material Disposal Sites	44

 	 	***************************************	 	 	 	mg. •		
							r	
								٠
								V V
								-
								J.,

FIGURES

			Page
Figure	1.	Chromatogram of an Aroclor 1242 Standard	6
Figure	2.	Chromatogram of a One Hour Ambient Air Sample Taken at the New Bedford Municipal Landfill	7
Figure	3.	Chromatogram of a Herring Gull Egg	8
Figure	4.	Gas Chromatograph / Mass Spectrophotometer Analysis of Pentachlorophenol	9
Figure	5.	Locational Map	22
Figure	6.	New Bedford Harbor Area	23
Figure	7.	Fishing Closure Areas established by the Massachusetts Department of Public Health	25
Figure	8.	Schematic of Aerovox Incorporated; New Bedford, Massachusetts	30
Figure	9.	Cornell Dubilier Electronics Incorporated plant layout	34
Figure	10.	Schematic Drawing of the New Bedford Municipal Wastewater Treatment Process	37

			_
			4
			-

ABSTRACT

A Summary of PCB Contamination in the New Bedford, Massachusetts Area

- * The area of PCB contamination extends from the northernmost extreme of the Acushnet River Estuary to the sediments in the vicinity of the New Bedford municipal wastewater outfall, a distance of over six miles.
- * Harbor sediments contain PCBs in levels up to 190,000 parts per million, or 19 percent. Concentrations in the thousands of ppm are common in the tidal flats near Aerovox Incorporated. These sediments exceed the federal hazardous waste criteria by several orders of magnitude.
- * 18,000 acres of a large, productive lobstering ground are closed to fishing. Lesser, yet significant, areas are closed to the taking of finfish and shellfish.
- * Finfish have been found to contain PCBs at concentrations exceeding one hundred parts per million.
- * Sampling at two industrial properties has documented the existence of high levels in upland sediments: 24,000 ppm (dry weight) at Aerovox and 99,000 ppm (dry weight) at Cornell Dubilier.
- * The municipal wastewater treatment plant sludge, grit and effluent contain elevated levels of PCBs.
- * The New Bedford municipal landfill is believed to contain one-half million pounds of PCBs.
- * Other dump sites are suspect.
- * Limited human blood analyses suggest that the blood of heavy fish eaters and industrially exposed individuals contain elevated levels of PCBs. No associated health effects have been documented.

INTRODUCTION

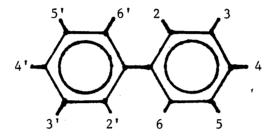
What is a PCB?

Polychlorinated biphenyls (PCBs) are industrial compounds which were commercially manufactured and marketed in the United States during the years 1929 to 1977. The Monsanto Corporation of St. Louis, Missouri, the United States' only industrial producer of PCBs, marketed PCB blends under the trade name "Aroclor". In recent years, all American made PCBs were manufactured at the Sauget, Illinois factory (1). Although approximately 210 different PCB molecules may exist, only about ten commercial blends, or Aroclors, have been widely marketed in the United States.

The total production of PCBs by Monsanto during the approximately fifty years of manufacture is believed to have totaled approximately 1.4 billion pounds. In the years 1970 to 1977, 35 to 40 million pounds were produced annually (2,3). The usage of PCBs by New Bedford's industrial concerns peaked at about two million pounds per year during the years 1973, 1974 and 1975 (4).

The chemically stable, non-flammable nature of PCBs together with their high boiling point, low solubility and high dielectric constant make these chemical compounds nearly ideal for many industrial uses. Unfortunately, these same properties allow PCBs to persist in the environment and bioconcentrate, creating a potential hazard to the environment.

In New Bedford, PCBs have been used by Aerovox Incorporated and Cornell Dubilier Electronics Incorporated (and possibly Acushnet Capacitors, Inc.) in the production of electronic capacitors.


Nationally, PCBs have been used as liquid coolants in transformers, as flame retardants, lubricants, machine tool cutting oils and hydraulic fluids. PCBs at one time were used in the production of carbonless reproducing paper, food packaging materials, printers' ink, recycled paper, floor tiles, waxes and asphalt.

Aroclor 1242 was the primary PCB used in New Bedford until 1971 when Aroclor 1016 became available for use in the manufacture of electronic capacitors. Two other Aroclors, 1254 and 1252, were used in lesser quantities by Aerovox and Cornell Dubilier. All use of PCBs in New Bedford stopped in 1977 (4).

Aroclors are manufactured as mixtures of various PCBs. The four digit number which follows the trade name Aroclor characterizes the blend of polychlorinated biphenyls. Except for Aroclor 1016 which was not named according to protocol, the first two digits identify the product as a biphenyl. The final two digits express the approximate percentage of chlorine (by weight) in the

PCB blend. For example, Aroclor 1254 is a blend of biphenyls with an average chlorine content of fifty-four percent. Aroclor 1016, the exception to this rule, is a biphenyl blend containing 41 percent chlorine.

The physical characteristics of PCBs vary according to the mixture. As the chlorine content increases, the Aroclors change from a colorless oil to a sticky resin to a white powder and their persistence in the environment increases (5). The general chemical structure of a PCB molecule (1,6) is shown below. Chlorine atoms are substituted for hydrogen at any numbered location on either benzene ring.

As an example of a specific PCB isomer, the structure of 2,2',4,5,5' - Pentachlorobiphenyl is diagrammed below.

Although 2,2',4,5,5' - Pentachlorobiphenyl is 54 percent chlorine by weight, this molecule is not the sole constituent of Aroclor 1254, nor is Aroclor 1254 composed entirely of molecules with five chlorine atoms. Instead, as shown in Table 1, Aroclor 1254 is a blend of biphenyls containing three to seven chlorine atoms.

Table 1.
Typical Percentage Composition of Polychlorinated Biphenyl Products*

Number of Chlorine Atoms per	Aroclor 1221	Aroclor 1016	Aroclor 1242	Aroclor 1254
Molecules	(21 % C1)	(41 % C1)	(42 % C1)	(54 % C1)
0	11	LT. 0.1	LT. 0.1	LT. 0.1
1	51	1	1	LT. 0.1
2	32	20	16	LT. 0.5
3	4	57	49	1
4	2	21	25	21
5	LT. 0.5	1	8	48
6	ND	LT. 0.1	1	23
7	ND	ND	LT. 0.1	6
8	ND	ND	ND	ND

LT - less than

ND - none detected, i.e., less than 0.01 percent

^{*} this table was taken from Tucker, et al. (7), page 707.

How are PCBs Measured?

Very small concentrations of polychlorinated biphenyls can be detrimental. Therefore it is important to use extremely sensitive analytic procedures in measuring PCBs. Precise measurements of PCBs in concentrations of parts per billion (ppb) are commonly required. In fact, EPA has recommended a water quality standard slightly below 1 part PCB per trillion parts of water to protect marine aquatic life (8).

PCB analyses are generally conducted utilizing a gas chromatograph (GC). A known standard is injected into the GC and a fingerprint of the standard is produced. A fingerprint chromatogram of Aroclor 1242 is shown in Figure 1. The sample to be analyzed is extracted with a solvent, cleaned on a column and is similarly injected into the gas chromatograph instrument to produce a chromatogram such as that shown in Figure 2.

Representative peaks from the standard chromatogram are matched with those from the sample chromatogram to determine the presence of the various Aroclors. The concentrations of the Aroclors are quantified by comparing the areas under the peaks of the sample with those of the standard. Figure 3 shows a chromatogram of herring gull eggs with Aroclor 1016/1242 and Aroclor 1254 representative peaks noted. The eggs from which this sample was taken contain approximately 5 parts per million (ppm) total PCBs. Note: Aroclors 1016 and 1242 are difficult to distinguish and are often reported together as Aroclor 1016/1242.

A more sensitive measurement of discreet PCB compounds (as opposed to blends) can be obtained by coupling a mass spectrometer (MS) with a conventional gas chromatograph instrument. When GC/MS is used, a vast amount of data is generated which when recorded, processed and displayed by a small or medium-sized laboratory computer produces a mass chromatogram such as that shown in Figure 4. As in conventional gas chromatography analyses, the product of GC/MS testing is a fingerprint which can be matched against a standard fingerprint to quantify the sample concentration. Through the use of computer analogs this process can be conducted accurately and automatically.

Gas chromatograph / mass spectrophotometer analyses are too expensive to allow for widespread use. It is not uncommon, however, to verify conventional gas chromatography results with occasional GC/MS measurements.

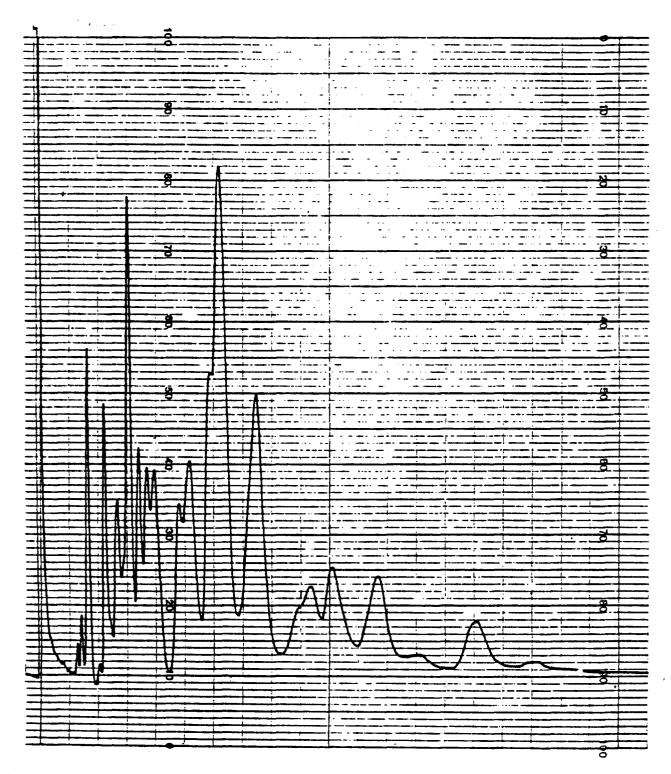


Figure 1. Chromatogram of an Aroclor 1242 standard. from: Stratton, et al. (9), page 31.

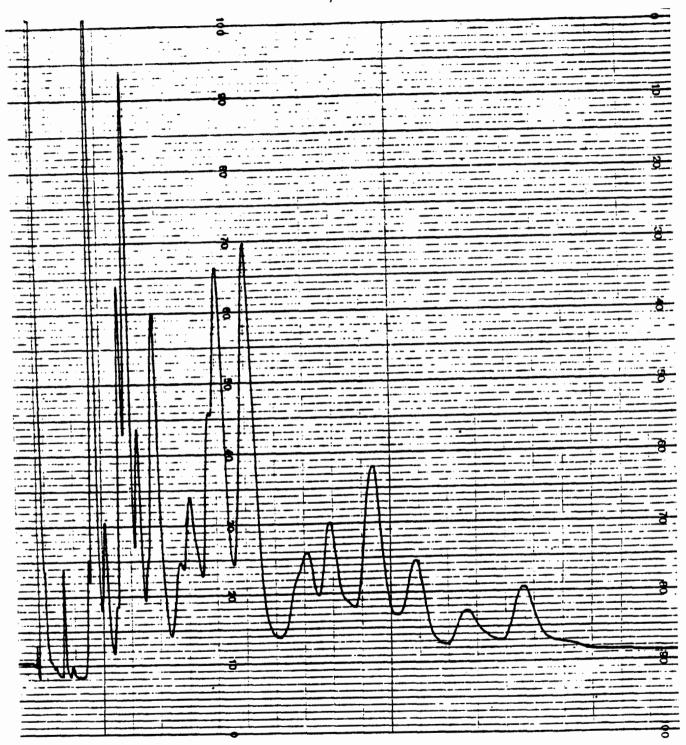


Figure 2. Chromatogram of a One Hour Ambient Air Sample Taken at the New Bedford Municipal Landfill. from: Stratton, et al. (9), page 30.

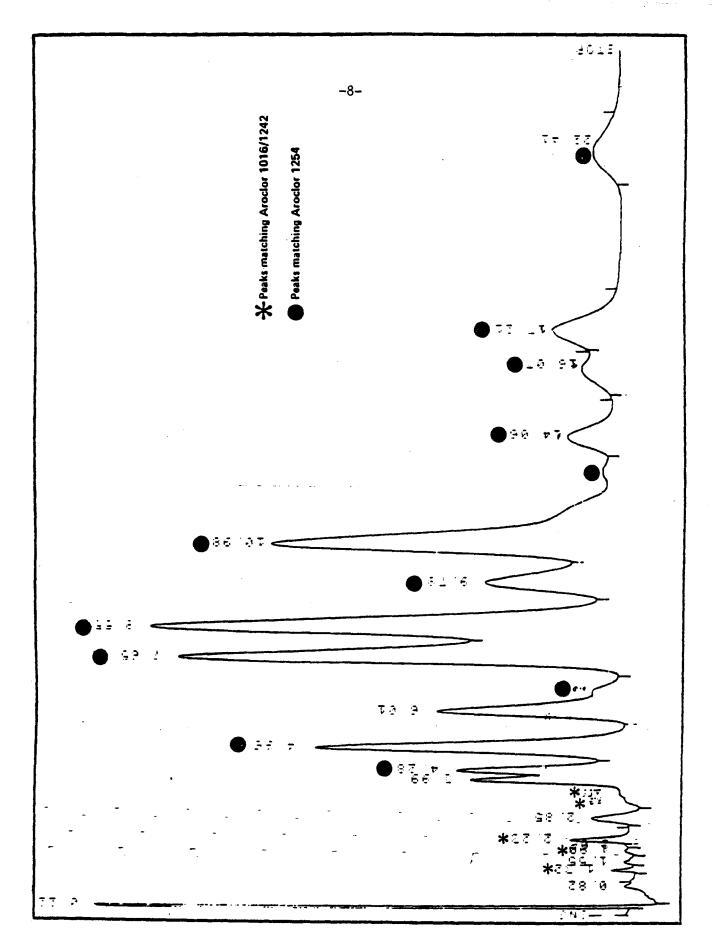


Figure 3. Chromatogram of a Herring Gull Egg. from: Stratton, et al. (9), page 29.

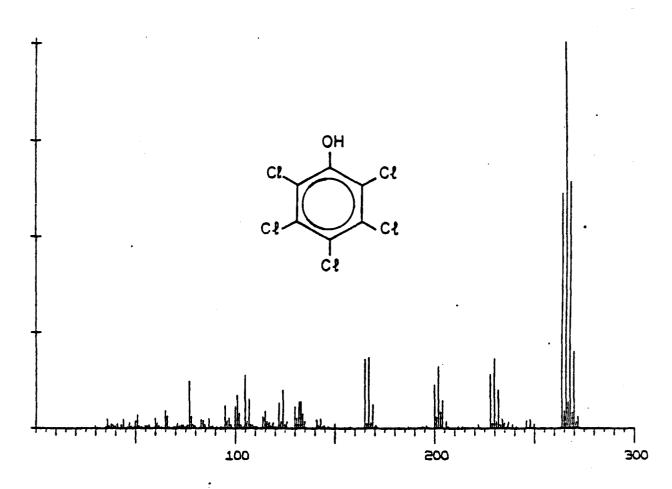


Figure 4. Gas Chromatograph / Mass Spectrophotometer Analysis of Pentachlorophenol. from: Biemann (10).

HEALTH AND ENVIRONMENTAL EFFECTS OF PCBs

PCBs are the only class of chemical compounds whose manufacture has been banned by the U.S. Environmental Protection Agency (11). Scientific studies have documented the toxicity and biological hazard of PCBs to many organisms. Several studies are referenced in this section.

First recognized as a problem by scientists in 1954 (12), PCBs came to world-wide attention in 1968 when over 1,000 individuals in Yusho, Japan became ill after consuming rice bran oil which had been contaminated with Kanechlor 400, a Japanese brand of PCB containing 48 percent chlorine (by weight). The average amount of PCB consumed by affected individuals was 2 grams (2,000 milligrams), with symptoms appearing at doses as low as 500 milligrams. As a result of this incident Japan subsequently banned all import and production of PCBs (2).

PCBs made big news in this country when it was discovered that high levels of these compounds were present in Lake Michigan salmon. Today these compounds are found all over the globe and in such diverse locations as Arctic polar bears, New York State chickens, England's rainfall, the world's oceans and buman milk (2).

Severe injury from short-term exposure to PCBs is unlikely, however scientists are concerned about the effects caused by long-term, low level exposure to these compounds.

PCBs have a low solubility in water and due to their low volatility in air they are not normally found in these media at concentrations greater than one part per billion (water) and nanograms per cubic meter (air). These low concentrations may nonetheless be significant. Thus, even though PCBs may be present at levels too small to be detected without sophisticated laboratory equipment, such concentrations can cause concern.

PCBs contained in sediments are generally not directly available for biotic uptake. The primary pathway of terrestrial PCB pollution occurs as PCBs enter the atmosphere and attach to fine particles and deposit on vegetation to enter into the food chain. In aquatic environments, PCBs enter the water column and attach to single celled organisms which are ingested, thereby entering the food chain. It is believed that PCBs polluting the air can be inhaled and directly enter the body. Also, fisheries studies have shown that aquatic organisms can directly absorb PCBs from the water column (13).

Relatively few measurements of ambient air PCB concentrations have been made in this country. The information that is available indicates that atmospheric PCB levels for oceanic and rural areas range from 0.002 to 1.6 ng/m3. Measurements from urban metropolitan areas are also quite variable and range from 0.5 to 36 ng/m3 with an average of 4 ng/m3 (1).

The concentration of PCBs in fresh water is generally in the range of 1-3 ng/1 (parts per trillion). The waters of Lake Michigan are believe to contain an average PCB level of 31 ng/1 (1).

There is great regional variation in the degree of PCB contamination in freshwater sediments throughout the U.S. The highest PCB levels are in industrial areas, particularly in the eastern part of the country. The area from the Pacific coast to the Continental Divide has the lowest PCB level in sediments ranging from 2-20 ppb. The highest "background" values reported are in the Appalachian Mountain-Atlantic coast region where values of 100-200 ppb are found to be common (1).

Data on PCB levels in oceans are very limited. Existing data indicate generally higher PCB levels in the waters of the North Atlantic than in the Pacific Ocean and Gulf of Mexico. Surface water values in the New England coastal region range from 0.8 to 8 ng/l (parts per trillion) (1). Surveys of marine sediments in the North Atlantic Ocean vary considerably. For example, off Nova Scotia values were undetectable; off Long Island and New Jersey, PCB levels were 10 and 40 ug/kg (or ppb) respectively (1); and in an area of the Acushnet River estuary in New Bedford, Massachusetts, samples measured several thousand parts per million PCBs (14,15).

PCBs are not generally detected in agricultural soils. The estimated average soil concentration for metropolitan areas in the U.S. is about 2 ug/kg (ppb) (1).

The extent of PCB contamination in foods has been monitored by the U.S. Food and Drug Administration and the U.S. Department of Agriculture since 1969. Their surveys indicate that the incidence and levels of PCBs have dropped in nearly all food classes. By 1975, the only significant sources were fish, meat, and dairy products; and fish was by far the most significant source. Comprehensive fish surveys conducted by the USFDA in 1973 and 1974 indicated a drop in the incidence of PCB detection in fish from less than 30 percent in 1973 to less than 20 percent in 1974. Even though the incidence dropped, however, the fraction of fish found to contain PCBs at levels exceeding 5 ppm increased. These surveys provided no information about sport fish per se, yet indicated that high levels of PCBs do not generally occur in saltwater fish (16).

The Environmental Protection Agency has estimated that half of the U.S. population contains 1-2 ppm of PCBs in their adipose (fat) tissue (8). Human PCB exposure generally occurs through environmental exposure. PCBs are commonly found in the fat of people who have not been occupationally exposed. PCBs concentrate mainly in fat, although they have also been found in the kidney, liver, brain, muscle and blood.

Because human milk is largely fat, compared to other body fluids it contains relatively high levels of PCBs. The average PCB concentration found in a 1977-78 study of human milk in Michigan women was 1.5 ppm, measured as a fat basis (17). Breast fed infants may receive more than 50 times the concentration of PCBs that is in the food eaten by their mothers (2).

Human Health Effects

Human exposure to PCBs can occur through a number of different routes: occupational exposure, ingestion of contaminated foods or water, exposure to contaminated air, soil or water, as well as transmission from mother to child through breast feeding. Because of the low concentrations and the subtle nature of the toxic effects, it is extremely difficult to correlate changes in the health of human and animal populations with environmental exposure to PCBs.

Although a large percentage of the human population has been exposed to PCBs, there are only a few well documented cases of health problems associated with such environmental exposures. Therefore, a detailed evaluation of the effects on human health in the general population is not currently available.

The largest recorded case of "PCB poisoning", which occured in Yusho, Japan in 1968, serves as a good example of the complications encountered when attempting to correlate cause and effect. The typical clinical findings of "Yusho" disease included chloracne with increased pigmentation of the skin, increased eye discharge, transient visual disturbances, feeling of weakness, numbness in limbs, headaches, and disturbances in liver function (2,16). Follow up research revealed that infants born to women exposed were born with brown pigmentation of the skin and were smaller than normal. These health effects slowly regressed as the infants aged.

Because PCBs are slowly excreted in breast milk, infants born up to 3 years after the mother's exposure had abnormal skin pigmentation, presumably caused by suckling on contaminated breast milk. While many of the clinical effects of PCBs are reversible, it may take several years for the symptoms to disappear. This phenomenon is probably a result of the long biological half-life of the contaminant (1,18).

Originally, the effects seen in the Yusho incident were attributed to PCBs. However, subsequent measurement by gas chromatography indicated that the rice oil contained not only 1,000 ppm PCB (19), but also 5-8 ppm of polychlorinated dibenzofurans (PCDFs) and polychlorinated quaterphenyls (PCQs). These contaminants amounted to one to three and one-half times the concentration of PCB in the oil (20,21).

Uncertainty about the confounding effects of PCBs, PCDFs and PCOs make it difficult to determine from the Yusho data exactly what effect, or effects, exposure to PCBs alone could have on humans. The toxicity of PCDFs are considered to range from 200 to 500 times that of PCBs (22) and PCDFs have been associated with embryonic mortality and birth defects observed in experiments conducted on birds. There is presently little information available on PCO toxicity. However, fat and blood samples taken from Yusho patients demonstrated that PCOs were elevated in the tissues of the exposed individuals.

PCBs have been found to be easily absorbed through the gastrointestinal tract, respiratory tract and skin. They are initially stored in liver and muscle tissues and then redistributed primarily to fat tissues. The degree to which PCBs are stored in the body or excreted depends upon the degree of chlorination of the PCB isomers. PCB isomers having a higher number of chlorine atoms are metabolized and excreted more slowly and accumulate to a higher extent in fat tissue. It is likely that metabolized PCBs are excreted in bile, urine and milk. Unmetabolized PCBs may be excreted in the feces, milk, hair and urine. Excretion in the urine is most prominent for the least chlorinated, while the bile becomes the more significant route of excretion for more highly chlorinated isomers. PCBs can be transferred to the fetus transplacentally and to infants by breast feeding (1,23).

PCBs have profound toxic effects on human health, particularly when repeated exposures occur. PCBs are accumulated in the body and metabolized for long periods of time, resulting in the induction of liver microsomal enzymes (23). Some of the effects on health that may be attributed to low-level exposure to PCBs are abnormal fatigue, abdominal pain, numbness of limbs, swelling of joints, chronic cough, menstrual irregularity, and headaches. Abnormal tooth development, hyperpigmentation, and low weight in newborn children may also be complications resulting from PCB exposure. Abnormalities in blood lipids, anemia, lymphocytosis and adrenocortical hypofunction have been recorded in a number of chronic diseases associated with PCB intoxication. In addition to dermatological abnormalities, such as acne and hyperpigmentation, there have been suggestions of increased incidence of cancer in some of the Japanese who were exposed to PCB through contamination of cooking oil (16,24).

Follow up studies of the Japanese who suffered "Yusho" disease noted that of the deaths that occurred up to five and one-half years after the first exposure to PCBs and other contaminants, nine of 22 (41 percent) were due to malignant neoplasms. Three of the tumors occurred in the stomach, one in the liver (with cirrhosis), two in the lungs and one in the breast, and two were malignant lymphomas. An additional liver cancer was mentioned in connection with one of the stomach cancers, but it is not clear whether this was an additional primary cancer or a metastasis from the stomach. Whether these cancer deaths represent an elevated incidence rate is uncertain because no baseline estimate of the numbers or types of tumors that could be expected in this group has been established (24).

Studies of individuals in other situations support the notion that PCBs are human carcinogens. These results are, however, inconclusive. In a study of chemical workers, two malignant melanomas were diagnosed in thirty-one workers exposed heavily to Aroclor 1254 (and also exposed to other chemicals). Among forty-one other workers less heavily exposed to Aroclor 1254, one additional melanoma was diagnosed. Among the 31 heavily exposed workers, three other individuals developed four cancers at other locations in their bodies, including two pancreatic cancer cases (24).

There is experimental evidence of a carcinogenic effect of certain PCBs in rodents (i.e., Aroclor 1260, 1254 and 1242) (24). However, no clear cut conclusions regarding possible human carcinogenic effects can be drawn from these studies.

The International Agency for Research on Cancer (IARC), an agency within the World Health Organization, after reviewing the animal and human findings concluded that the data provide "suggestive evidence" of a relationship between PCBs and the development of malignant melanoma. Thus, until confirmatory evidence is produced the IARC believes that PCBs should, for practical purposes, be regarded as carcinogenic to humans (24).

The potential for reproductive abnormalities occurring as a result of chronic exposure of PCBs has been suggested by the results of controlled experiments using nonhuman primates. In addition to alterations in the menstrual cycle and births of abnormally small infants, experimental monkeys experienced a greater frequency of early abortions following low-level exposure to PCBs (5 ppm Aroclor 1248 in the diet for six months). Infants born to mothers exposed to PCBs during gestation and lactation also showed some loss of immunological competence as well as learning and behavioral deficiencies. These abnormalities persisted indefinitely (2,25).

Research sponsored by the Wisconsin Sea Grant program and conducted by James Allen, a pathologist with the University of Wisconsin - Madison Medical School and the Regional Primate Research Center, involved the feeding of PCBs to monkeys and subsequent monitoring of reproductive effects. The results of these experiments possess implications for humans since humans have metabolic pathways similar to those of monkeys.

Allen fed eight female Rhesus monkeys 2.5 and 5 ppm Aroclor 1248 in their diet for six months during which time they were mated to unexposed males. Six of the eight females fed at 5.0 ppm conceived but only one was able to carry to term. All of the eight animals fed at 2.5 ppm conceived and five gave birth. PCB levels in milk during nursing ranged from 3.85 - 9.9 ppm on a fat basis. Within two months following birth, the infants experienced loss of facial hair, acne, swelling of the eyelids and pigmentation of the skin. Three of the six infants died during their first year of life.

To evaluate any potential prolonged effects on female primates, the same females were mated to control males (i.e. males maintained on a PCB-free diet) one year after the females had been taken off the PCB diet. The infant monkeys showed considerable weight variation and the infants from the 5 ppm group were generally smaller than historical control infants. The experimental monkeys were exposed to PCB levels of from 0.9 to 1.25 ppm (on a fat basis) in milk and showed signs of PCB poisoning (25,27).

Allen's findings demonstrate that PCBs may be toxic to primates over a wide dose range. Although the possibility of man consuming a steady diet containing these concentrations of PCBs is remote, these findings point out that small amounts of PCBs are toxic and that a safe level of consumption has not yet been established.

Environmental Effects / Findings

"In early 1960, mink ranchers began noticing reproductive complications and excessive kit mortality among their stock. An acute problem was evident by 1967, resulting in an unprecedented 80 percent increase in newborn mortality. Subsequent investigation indicated a strong relationship between kit mortality and the percentage of coho salmon in the mother's diet, as well as the duration of feeding with a salmon diet. Factors such as rancidity, pesticide contamination and mercury poisoning were suspected but were shown not to contribute to the problem. Experiments with the mink diet were conducted, and the results indicated that diets of 30 percent salmon produced the reproductive problems." From: NAS (1), page 119.

The coho salmon were found to contain elevated levels of PCBs and the kit mortality was attributed to the ingestion of PCBs. Later studies showed that mink fed a diet containing 5 ppm Aroclor 1242 suffered complete reproductive failure. Aroclor 1016 was also found to impair reproduction, but not as dramatically as 1242 (28).

"In 1977, a poultry firm began noticing high chemical levels in tissue samples taken from their chickens. The feed supplier was asked to help in pin-pointing the cause, and the culprit was found to be fish meal contaminated by PCBs that had been used in formulating the chicken feed. The fish meal had been prepared and stored in Puerto Rico at a Ralston Purina plant warehouse where two electrical transformers containing PCBs were stored also. Contamination of the meal occurred during a fire in April 1977, which damaged the electrical equipment and allowed PCBs to leak out. Water from fire hoses evidently mixed with the PCB fluid and soaked into the stored fish meal. The contamination was not detected and the fish meal was subsequently sold. As a consequence, 400,000 chickens and 15,000 dozen eggs were destroyed. Some of the contaminated feed did not actually contain the PCB fish meal, but the feed had been processed with the same machinery as the fish meal." From: NAS (1), page 121.

PCBs levels in wildlife may be increasing. First noticed in birds in 1966, PCBs have subsequently been detected in all organisms examined in the North and South Atlantic (2). Elevated levels of PCBs have been observed in New York State snapping turtles (29), bald eagle eggs collected in Alaska and several continental U.S.A. locations (30), game birds (31) and Ascension Island green turtles (32).

"The effects of PCBs are more severe in birds and higher mammals than they are in lower vertebrates and invertebrates. The most serious consequence in birds is reproductive failure, although other symptoms such as kidney, heart and liver damage can also occur. Fish take in PCBs both through the food chain and directly from the surrounding water through gills and skin. Fish can contain very high concentrations of PCBs without being severly affected although it may affect their reproduction. Shellfish, oysters and shrimp, on the other hand, are highly sensitive to PCBs — only very small concentrations in the water can kill them.

... "Fish can take up PCBs through their gills, fins and skin. PCBs also adhere to small particles in the water and thus are taken in by lower forms of aquatic life and passed up through the food chain to the top predators, fish and fish-eating birds and mammals. Scientists have found that some fish contain concentrations of PCBs that are 100,000 to a million times greater than the concentrations in surrounding waters.

"Scientists are not yet sure whether PCBs are significantly reducing wildlife populations, but there are indications that they may be. As is the case with DDT, birds and mammals high on the food chain, especially those consuming fish, are hard-hit. High PCB concentrations have been found in herons and scaups in New York, petrels and peregrine falcons in California, eagles in Sweden and the U.S., terns in Florida and gulls on the Great Lakes, to mention a few. Like DDT, PCBs degrade Vitamin D and estrogen in birds, resulting in eggshell-thinning and reproductive failure." From: Wisconsin Sea Grant (2), pages 2,4.

A summary of the chronic toxic effects of PCBs is presented in Table 2.

Table 2. Summary of Chronic Toxic Effects of PCBs*

TEST	EFFECTS
Chronic Feeding Aquatic Species	Threshold effects in egg hatchibility of vertebrates and invertebrates at levels of 2 to 5 mg/l
	Embryo toxicity evident at 50 mg/l
Terrestrial Species	Mouse - some liver change with exposure to highly chlorinated products; 300-500 mg/g
	Rat - some liver changes, minimal reproductive effects; 100-500 mg/g
· .	Monkey - Yusho symptoms, altered reproduction cycles, hyperplastic gastritis and ulceration; 2.5-5 mg/g
	Chicken - some morphologic deformity, reproduction decline, subcutaneous edema; 20-50 mg/g
	Mink - dose response relationship in growth and reproduction; 10 mg/g
	Dogs - reduced growth, some liver changes; 100 mg
	Pelican - some hepatocellular changes; 100 mg
	Wildfowl - some reproduction changes, varies with species; 50-200 mg/g
Teratogenicity (birth defects)	Effects seen in avian species; 50-200 mg/g
Mutagenicity (genetic alterations)	Chromosomal abnormalities - negative results
(genetic afterations)	Dominant lethal mutations - negative results
	Ames test - Aroclor 1221; significantly mutagenic

clear

Highly chlorinated compounds produced tumors in rats and mice, relationship with PCB not always

(tumor causing)

Oncogenicity

^{*}taken from: NAS (1), page 123.

PCB LIMITS AND STANDARDS

To protect American consumers from PCB related illnesses, the U.S. Food and Drug Administration has established limits for various foods. The limit for fish and shellfish is 5 parts per million (wet weight) of total PCBs in the edible portion of the foodstuff. Canada has established a fisheries limit of 2 ppm, and this level has been recommended as the new United States standard (16). All of the U.S. FDA limits on PCBs currently in effect are presented in Table 3 below.

Table 3. USFDA Limits on PCB Concentration in Foodstuffs*

FOOD	CONCENTRATION (wet weight)
Fish and Shellfish	5.0 ppm (edible portion)**
Milk and manufactured dairy products	1.5 ppm (fat basis)
Poultry	3.0 ppm (fat basis)
Red meat	3.0 ppm - action level (fat basis)
Eggs	0.3 ppm
Infant and Junior foods	0.2 ppm
Paper food package in direct contact with foodstuff	10.0 ppm - action level
Animal feed components of animal origin	2.0 ppm
Feed for food producing animals	0.2 ppm (except concentrates, supplements and premixes)

^{*} source: Federal Register (26).

^{**}USFDA recommended lowering this standard to 2 ppm in 1977, however challenges by the seafood industry have resulted in the courts ordering a temporary stay on any changes.

THE NEW BEDFORD PCB PROBLEM

New Bedford, Massachusetts is a port city located on Buzzards Bay approximately 55 miles south of Boston. With a population of 98,500, New Bedford is Massachusetts' fourth largest municipality (36).

New Bedford is nationally know for its role in the development of the whaling industry and as the largest revenue producing fishing port on the East Coast. New Bedford can accurately be referred to as "the scallop capital of the world." Surpassing Nantucket as the world's largest whaling port in 1830, New Bedford has historically been inextricably linked to the sea. In 1845, New Bedford was the nation's fourth largest port, surpassed only by New York, Boston and New Orleans.

The discovery of oil in Pennsylvania in 1860 signaled the beginning of the end for the whaling industry. Ironically, it was on New Bedford's own Fish Island that the process of refining petroleum was perfected. The decline of the whaling industry already hurt by new found oil reserves, accelerated during the Civil War when Confederate raiders, most notably the Shenandoah and the Alabama, sank some fifty New Bedford whaling ships on the high seas.

The whaling industry's decline continued after the end of the war. The destruction of twenty-one whalers in the northern ice of Point Barrow in 1871 virtually signaled the end of New Bedford's whaling industry, although a few whalers sailed from New Bedford until 1920.

As the whaling industry decayed, the textile industry flourished. During the half century following the Civil War, 26 cotton textile mills were constructed along the New Bedford shore of the Acushnet River. New Bedford's textile industry concentrated on the production of fine cotton goods and became the world's leading producer in the late 1800's. The economic prosperity based on the textile industry lasted until the 1930's when the Great Depression dealt the industry a blow from which it never recovered.

Since the end of World War II, the City has attempted to broaden its economic base through the creation of an industrial park and other incentives designed to encourage the movement of new industry into the area. Two of the mainstays of the New Bedford economy, Aerovox Incorporated and Cornell Dubilier Electronics Incorporated are housed in old textile mill houses located on the banks of the Acushnet River estuary. Their use of polychlorinated biphenyls has brought a new series of problems to the New Bedford community.

Contamination of New Bedford Harbor was first documented in 1976 when the Environmental Protection Agency conducted a New England wide PCB survey and found high levels of PCBs in various harbor locations. Testing revealed that two industrial operations, Aerovox and Cornell Dubilier were discharging wastewaters containing PCBs to New Bedford Harbor by both direct discharge and indirectly via the New Bedford Municipal wastewater treatment facility (37).

COMMONWEALTH OF MASSACHUSETTS

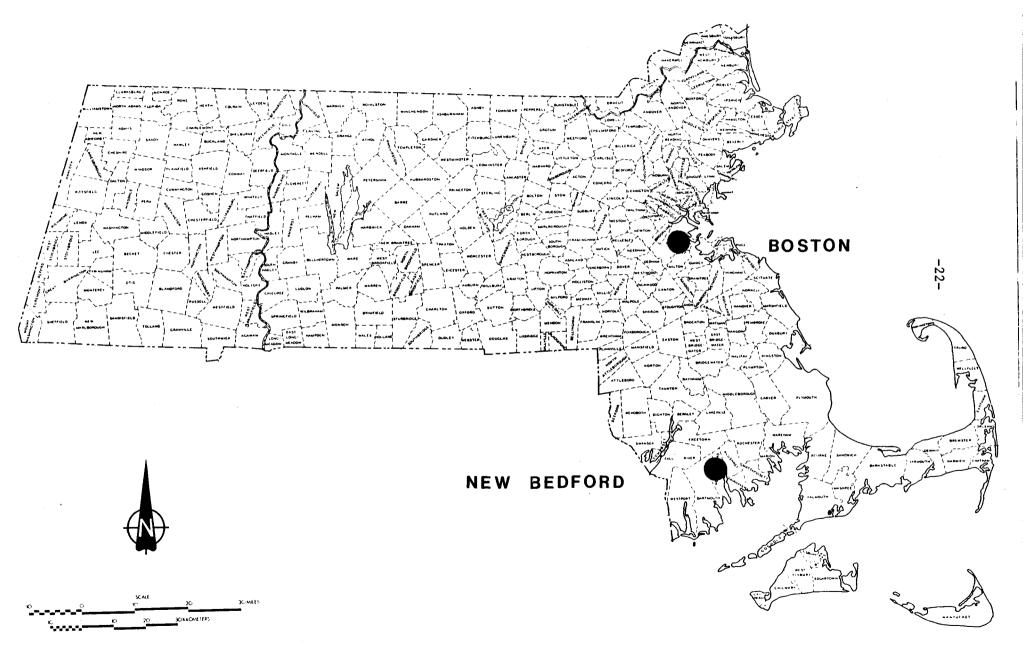
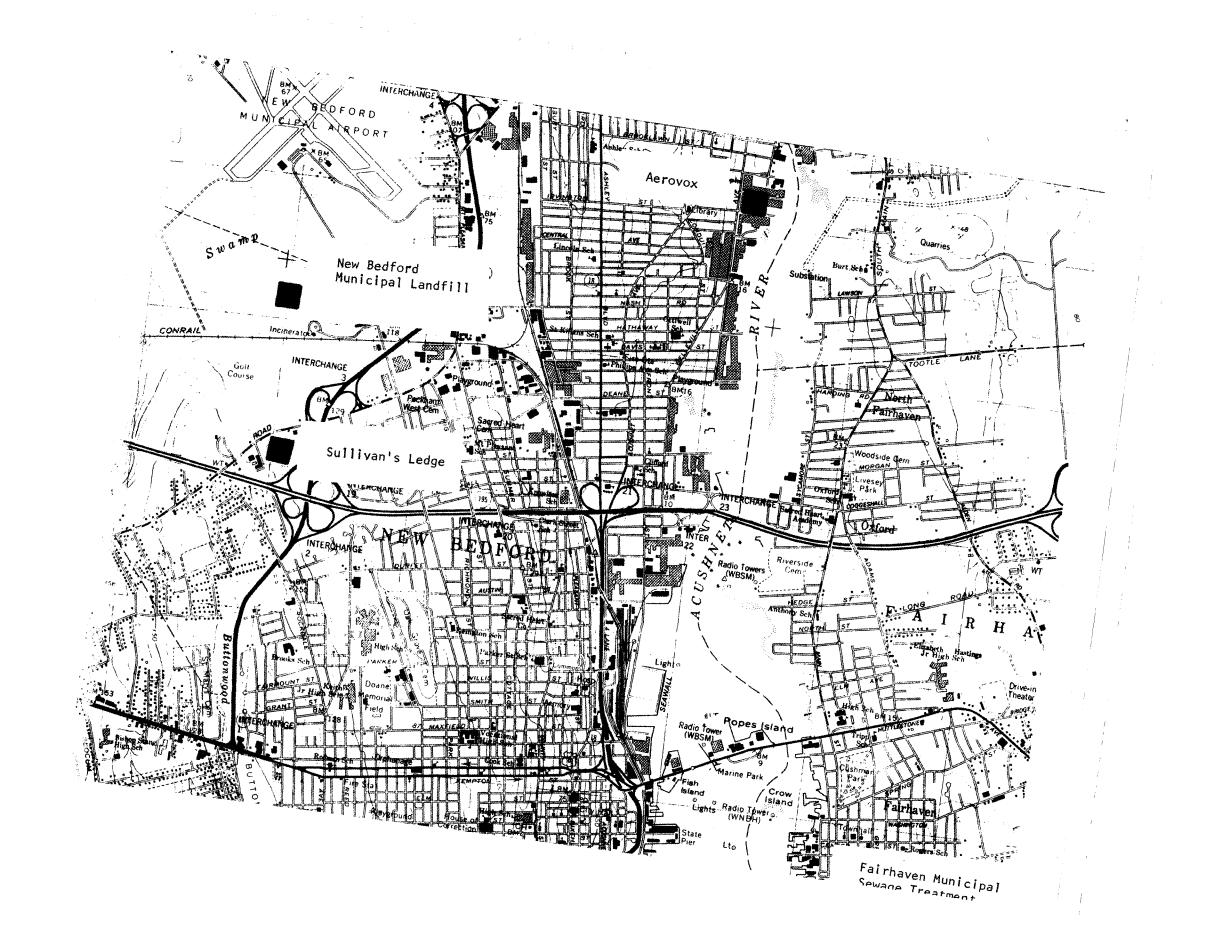
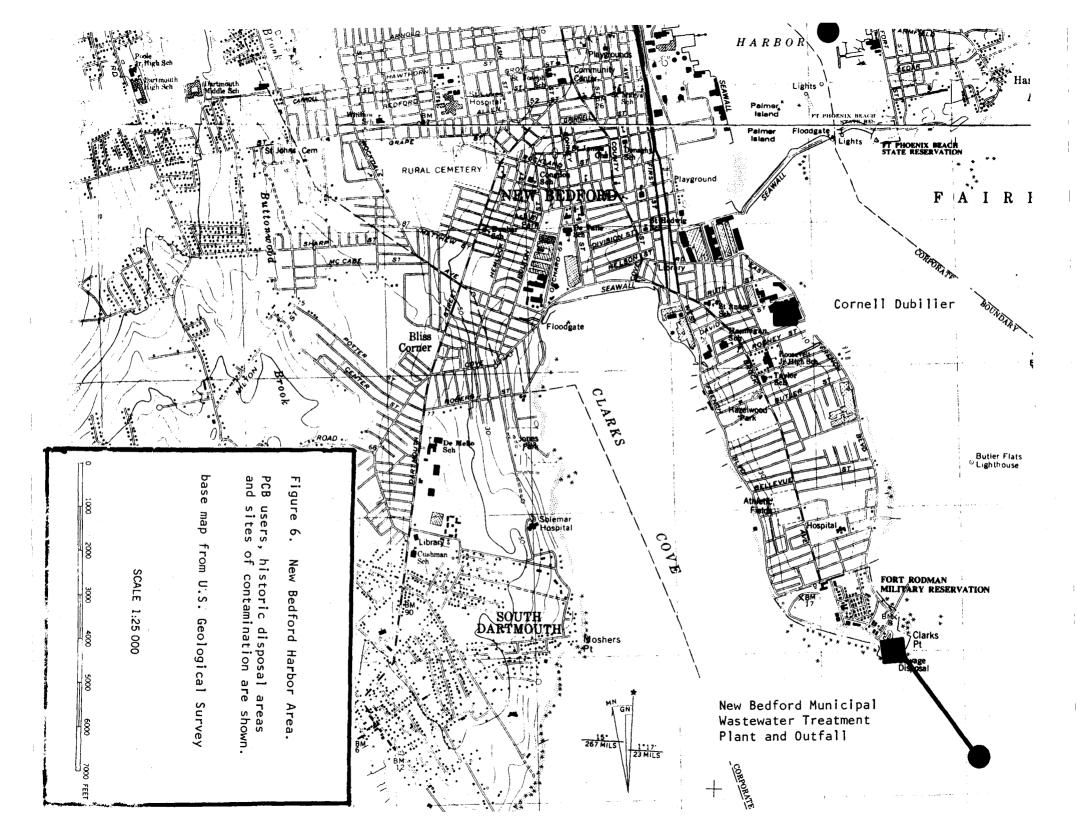


Figure 5. Locational Map

Since this initial survey of the New Bedford area, a much better (although not yet complete) understanding of the extent of PCB contamination has been gained. The direct discharge of PCB contaminated wastewater from Cornell Dubilier has been significantly reduced while the Aerovox discharge has been nearly eliminated. The discharge of PCBs from New Bedford's municipal wastewater treatment plant however, remains significant. Recent studies have shown that 300 to 700 pounds of PCBs are being discharged per year (38,39,40,41).

The sediments underlying the entire 985 acre New Bedford/Fairhaven Harbor contain high levels of PCBs. Concentrations range from a few parts per million to over 100,000 ppm. Portions of Buzzards Bay are also contaminated, with concentrations occasionally exceeding 50 ppm. The water column in New Bedford Harbor has been measured to contain PCBs in the parts per billion range (42), well in excess of EPA's 1 part per trillion guideline (43).


Widespread contamination of the Acushnet River estuary environs has resulted in the accumulation of PCBs in many marine species. Thousands of acres have been closed to the harvesting of shellfish, finfish and lobsters because of PCB pollution. Figure 7 shows the three closure areas established by the Massachusetts Department of Public Health on September 25, 1979 (44). Area I (New Bedford Harbor) is closed to the taking of all finfish, shellfish and lobsters. Area II is closed to the taking of lobster and bottom feeding finfish (eels, scup, flounder and tautog). Area III is closed to the taking of lobsters. Responsibility for enforcement of these closures is entrusted to the Massachusetts Division of Law Enforcement.


Much of the PCB sampling done before 1980 was analyzed for only one PCB blend, Aroclor 1254. Woods Hole Oceanographic Institute scientists have presented evidence suggesting that the PCB contamination is often understated by factors of three to five. If so, the extent of PCB contamination in New Bedford Harbor and Buzzard's Bay is much greater than much of the historical data indicate.

Considering only Aroclor 1254, the PCB levels in five finfish species have been found to exceed the U.S. Food and Drug standard of five parts per million. Of 183 lobsters sampled between 1976 and 1980, a median concentration of 4.9 ppm was found in edible tissues. The average value was 8.7 ppm, the maximum 84 and the minimum 0.1. These values include all lobsters analyzed in Areas I, II, III and beyond, thereby representing lobsters captured in a twenty-eight square mile, or 18,000 acre, area.

Table 4 presents data on the finfish results. The most recent lobster data (46) appears to document a lowering in the PCB contamination level. However, since these data were collected during winter months and season fluctuations are believed to exist, this finding may be misleading.

The New Bedford Municipal landfill contains over 500,000 pounds of PCBs (9,37). Waste products from Aerovox, Cornell Dubilier, and the New Bedford sewage treatment plant have been disposed in this landfill. Most of the PCBs disposed at the landfill are contained in reject capacitors from Aerovox and Cornell Dubilier.

The 1973 USFDA tolerance level of 5 ppm in fish and shellfish is based on an evaluation of all available animal and human toxicological data. The key human study used to determine an acceptable daily PCB intake was the incident in Japan where over 1,000 persons consumed rice bran oil contaminated with PCBs (Kanechlor 400). The average dosage of PCBs that caused overt health effects was 2,000 milligrams. Although this dosage was received in approximately fifty days, 2,000 mg was divided into a 1,000 day exposure period. A safety margin of 10 was applied to this value to determine that 200 ug/day would be an acceptable PCB intake (26).

Considering average fish consumption, the FDA calculated that a 5 ppm PCB level in fish in addition to all other dietary sources of PCBs would not exceed the 200 ug/day intake. Nonetheless, when this tolerance level was established by the FDA in 1973, it was termed "temporary" because: (a) it was calculated as a 1,000 day, not a lifetime, exposure and (b) it was assumed that PCB levels would decrease with time. Thus, when the temporary tolerance level of 5 ppm was set, the FDA planned to reevaluate the standard during the next few years.

In 1977, the U.S.FDA proposed that the tolerance level for fish be reduced from 5 ppm to 2 ppm when it was found that the PCB levels in fish had not decreased since 1973. The FDA proposed to reduce the tolerance level to more adequately protect the public health after further toxicological testing demonstrated potential mutagenic, carcinogenic and reproductive effects at low levels. The FDA concluded that a no-effects threshold, and thus an allowable PCB intake, could not be conclusively determined.

Since a zero tolerance level would be impractical, the FDA evaluated the possibility of lowering the guidelines by taking into account economic factors. A l ppm guideline was considered, but was not proposed because the FDA decided that the public health protection afforded, at least theoretically, did not justify the greater loss of food that would result. It was calculated that there would be an economic loss of \$16 million per year in landings associated with this standard. Instead, the FDA chose 2 ppm as the tolerance level necessary to protect public health even though this guideline would cause an estimated economic loss of about \$5.7 million per year (26).

Following the announcement of the 2 ppm PCB tolerance level, implementation of the new regulation was stayed in 1978 as a result of objections by the National Fisheries Institute (NFI). A hearing is scheduled for 1982 and will consider only the magnitude of human food loss from reducing the tolerance level from 5 ppm to 2 ppm. The 5 ppm concentration will remain as the enforceable tolerance level for total PCBs in fish until the courts settle this matter.

At this time, there are no federal standards for PCB concentrations in ambient air or drinking water.

In 1977, the National Institute for Occuational Safety and Health (NIOSH) recommended a 1 ug/m3 PCB concentration in workroom air. This concentration is judged adequate to protect the health and provide for the safety of employees for up to a 10 hour workday, 40 hour workweek, over a working lifetime.

This 1 ug/m3 PCB atmospheric level was based on findings of adverse reproductive effects, potential human carcinogenicity and the failure to demonstrate the existence of a "no effects" level for injury to the liver. Although NIOSH recommended changing the occupational atmospheric standard to 1 ug/m3 (23), OSHA has not altered its federal standard of 1 mg/m3 for Aroclor 1242 and 0.5 mg/m3 for Aroclor 1254 (33).

Wastewater discharges of PCBs are regulated by the USEPA under 40 CFR s.129.105. This regulation is implemented through the National Pollution Discharge Elimination System (NPDES) permitting program. PCBs are prohibited in any discharge from any electrical capacitor manufacturer (34).

The disposal of PCB contaminated oils, soils, sludges, et cetera is regulated by the USEPA under 40 CFR s. 761 (35). Oils which contain PCBs in concentrations exceeding 500 ppm (dry weight) must be disposed in an incinerator which complies with specific EPA "Annex I" guidelines. 40 CFR s.761.10 allows for the disposal of oils contaminated to a lesser degree - 50 to 500 ppm - by chemical waste landfilling or incineration in either a high efficiency boiler or Annex I incinerator.

All non-liquid wastes in the form of soil, rags, or debris must be disposed in an Annex I incinerator or chemical waste landfill if the PCB content exceeds 50 ppm dry weight. All dredge spoils and municipal sewage sludges containing PCBs in excess of 50 ppm (dry weight) must be disposed in an Annex I incinerator, chemical waste landfill or in a specially approved disposal site (35).

On October 30, 1980 the U.S. Court of Appeals for the District of Columbia required EPA to revise the 50 ppm limit, after ruling that insufficient scientific evidence had been presented to support it. The limit does, nonetheless, remain in effect on a temporary basis while EPA proceeds with the process of establishing a new standard.

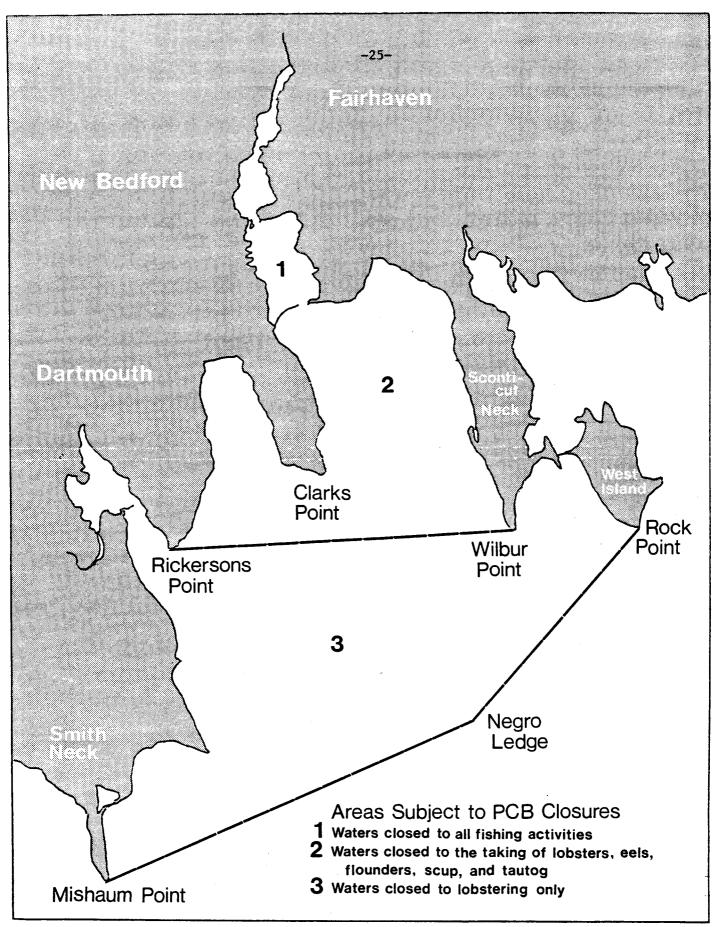


Figure 7. Fishing Closure Areas established by the Massachusetts Department of Public Health.

Table 4. PCB Concentrations in New Bedford Area Finfishes (1976-1980).

Species	Median	Mean	High	Low	No. Sampled
American eel	24	131	730	11	32
Cunner	38	38	57	20	2
Summer flounder	7.4	9.3	22	0.2	10
Window pane	5.5	8.8	14.3	3.1	30
Winter flounder	6.8	6.4	22	, 0	44
Silver hake	3.5	3.5	6.4	0.7	2
Scup	2.3	2.1	11.4	0	50
Bluefish	0.3	2.1	16.5	0.2	11
Tautog	0.9	1.7	11.0	0.1	17
Striped bass	0.9	1.2	3.0	0.1	8
Fourspot flounder	0.8	0.8	-		1
Butterfish	0.5	0.5	0.9	LT 0.1	4
Black sea bass	0.4	0.4			1
Dogfish	0.2	0.2			1
Red hake	LT 0.1	LT 0.1			1

LT = less than

Data compiled from Kolek and Ceurvels (45).

Contaminated waste oils and other materials from these industries were, it is believed, also disposed at the landfill. The residuals removed in the wastewater treatment process including grit, sludge and ash are the major remaining source of PCBs entering the New Bedford landfill.

Two other areas known to contain substantial quantities of PCB wastes are the properties of Aerovox and Cornell Dubilier. Landfilling at these two sites has taken place over the years and some of the materials used as fill were apparently contaminated with PCBs. Even today capacitors containing concentrations of PCBs in the thousands of parts per million litter the New Bedford Harbor foreshore behind the Aerovox factory. Upland sediments in the vicinity of Cornell Dubilier contain up to 99,000 ppm (dry weight) PCBs (47). This is nearly equivalent to 10 percent PCB by weight.

Other sites in New Bedford are suspected to contain substantial quantities of PCBs. One, Sullivan's Ledge, is located on Hathaway Road near the municipal landfill. This site, a former quarry is now a vacant lot. The filling of the quarry occurred when the City of New Bedford used the area as a dumpsite for brush, rubble, demolition and industrial wastes (48).

Waste oils containing PCBs were used by New Bedford and possibly other municipal public works departments in the oiling of local roadways (49). In summary, past activities in New Bedford have created an environment in which PCBs may be found throughout the community.

The few New Bedford area residents who have been studied have been found to contain high levels of PCBs in their blood. Recently, two small scale epidemiology studies were conducted by the Massachusetts Department of Public Health, Harvard's School of Public Health and the Centers for Disease Control in Atlanta, Georgia. Heavy fish eaters and occupationally exposed individuals were selected. The results of the blood testing presented in Table 5 indicates that those residents tested are among the most highly contaminated in the United States (50,51).

Discussions of the known and suspected sources of New Bedford area PCB contamination follow. Based on information gathered to date, efforts have been made to quantify the level of PCBs released to the environment from the various sources.

Table 5. Summary of Blood Serum Testing* (analyses conducted for Aroclor 1260)

	MALES	FEMALES	TOTAL
Number of people sampled:	39	12	51
Average PCB level (ppb):	42	18	36
Median PCB level (ppb):	17	9	15
Range (ppb):	2 - 343	4 - 64	2 - 343
Number (percentage) greater than 30 ppb:	13 (33%)	3 (25%)	16 (31%)

^{*} Only one percent of the American population contains blood serum PCB levels in excess of $30~\rm{ppb}$ (50).

source of table: MDPH (51).

Aerovox Incorporated

"Aerovox Incorporated, (a subsidiary of R.T.E. Corporation) is located at 740 Belleville Avenue, New Bedford, Massachusetts. Aerovox's sole product is capacitors, (which) are used in a wide variety of electrical applications ranging from ballasts used in flourescent light fixtures to atomic energy research... All capacitors produced are used as components in other electrical products.... The physical size of (these products) ranges from units of approximately 1 cubic inch to units of 5,000 cubic inches." From: Santos (4), page 161.

The Aerovox facility used PCBs as impregnation fluids from 1947 to 1977 (52). During this period, capacitors were manufactured containing paper, paper foil and mica. "Aroclor 1242 was used until 1971 when Aroclor 1016 was introduced...(completely replacing) 1242 as the impregnation fluid. Aroclors 1254 and 1252 (were also used) but the quantities are unknown. Between January 1973 and December 1975, Aerovox used more than four million pounds of PCB impregnation fluid in its manufacturing process.

"Sources of PCB contaminated solid wastes included reject capacitors, diatomaceous earth from Aroclor filtration,...chemical resistant gloves, air duct filters and absorbent material used to clean small PCB spills and drippings"... From: Santos (4), page 162.

According to Santos, Aerovox estimated that more than 164,000 pounds of PCBs were contained in capacitors sent to the New Bedford landfill during 1973, 1974 and 1975. Santos estimates that approximately 6,000 pounds (dry weight) of diatomaceous earth used to filter PCB oil at the Aerovox factory were also disposed in the landfill. Estimates of the quantity of other PCB contaminated solid wastes generated by Aerovox are not available.

"Sources of PCB contaminated liquid wastes included residue from the trich-loreothylene distillation process...(and) the contents of drip pans... At the time of an EPA plant inspection in December 1975, the storage area for contaminated Aroclor was located in the basement of Aerovox's facility, away from the fresh Aroclor storage area. The (area formally used for storage) is concrete and contains no drains." From: Santos (4), page 164.

During the years 1971 through 1977 when PCBs were used at Aerovox, contaminated fluids were stored in capped 55 gallon steel drums. During these years, the drums were periodically trucked to Bridgeport, New Jersey for incineration. Prior to 1971 the exact method of disposal used is unknown (4). It is suspected that large quantities went to Sullivan's Ledge and to the New Bedford landfill for disposal.

Aerovox currently has two potential wastewater discharges; direct discharge to the Acushnet River estuary and an indirect discharge via the New Bedford Wastewater Treatment Plant located on Clark's Cove. On the north side of the plant an external trough runs the length of the building and leads directly to

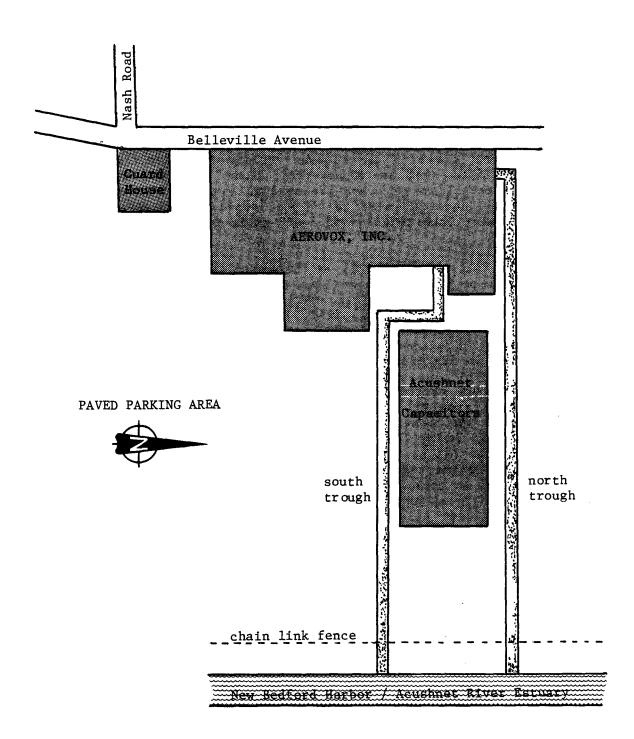


Figure 8. Schematic of Aerovox Incorporated; New Bedford, Massachusetts. figure from: Versar (52), page 3.

the Acushnet River (see Figure 8). At one time, the trough received multiple discharges of non-contact cooling water from vacuum pumps. In December 1975, the trough flow was estimated at 650,000 gallons per day (gpd). Since that time, the National Pollution Discharge Elimination System (NPDES) permit for this discharge has expired. A closed cycle cooling system has been installed, but occasional discharges from this trough may nonetheless occur.

In January 1976, the sanitary waste discharges from Aerovox to the New Bedford wastewater treatment plant via the municipal sewer system contained from 72 to 400 ppb of PCBs (53). Two wastewater grab samples collected by DEOE in 1981 failed to identify any PCBs in the pipeline leading from Aerovox to the New Bedford wastewater treatment plant (41). Further sampling efforts will be conducted by state and federal agencies to accurately document the current situation.

In 1976 the north trough effluent contained 29 to 51 ppb PCBs (53). After an EPA sampling effort in June 1981, which documented the presence of sediments containing from 40 to 22,000 ppm PCBs (52), Aerovox cleaned the north and south troughs and disposed of the contaminated materials in accordance with state and federal laws.

This and other sampling studies undertaken by EPA and DEOE have documented the presence of high levels of PCBs in all soils tested on the Aerovox property. Soils inside the chain link fence which surrounds the property were sampled and found to contain up to 24,000 ppm (52). Seaward of the fence, sediment sampling revealed levels of 680 to 190,000 ppm (40,54).

The National Institute for Occupational Safety and Health (NIOSH) performed an extensive industrial hygiene survey of the Aerovox facility in March 1977. As part of this survey, both "personal" and "area" air samples were collected throughout the facility and analyzed for PCB content. Results indicated that the 29 personal and 25 area air samples which had been collected and analyzed for PCBs ranged from 0.17 mg/m3 to 1.26 mg/m3 (33). The current Occupational Safety and Health Administration (OSHA) standard for Aroclor 1254 is 0.5 mg/m3. The standard for Arolcor 1242 is 1.0 mg/m3. In a recent criteria document, NIOSH has recommended an upper limit of 1.0 microgram total PCBs per cubic meter of air (1.0 ug/m3) as a time weighted average throughout a ten hour workday or 40 hour week (23,33).

Cornell Dubilier Electronics Corporation

Cornell Dubilier is located at 1605 East Rodney French Boulevard, New Bedford, Massachusetts and is engaged in the manufacture and sale of capacitors for use in consumer products. Cornell Dubilier Electronics Incorporated is a wholly owned subsidary of Federal Pacific Electric, which is in turn wholly owned by Exxon.

Most of the capacitors manufactured by Cornell Dubilier prior to mid-1977 contained PCBs. A relatively small number, however, were produced using mineral oil and no PCBs. Aroclor 1016 was in use from 1971 to 1977 while Aroclor 1242 was used prior to 1971 (4).

"Relatively small amounts of Aroclor 1254 had (also) been used as an impregnation fluid until early 1975. It is estimated that between January 1971 and January 1976, Cornell Dubilier...used more than 3.1 million pounds of Aroclor 1016 and 24,000 pounds of Aroclor 1254.

"In December 1976, EPA Region I performed an on-site inspection of Cornell Dubilier's facilities. At that time, information was obtained about the generation and disposal of liquid and solid PCB wastes.

"Sources of PCB contaminated solid wastes included reject capacitors, contaminated solder from sealing operations, diatomaceous earth from filters, absorbent material used to clean small spills and drippings, wiping rags and gloves. The exact quantity of PCB solid wastes generated by Cornell Dubilier is not known, however it has been estimated that from January 1971 through January 1976, more than 270,000 pounds of Aroclor have been sent to the New Bedford landfill. (Most of this as reject capacitors).

"Records were not maintained by Cornell Dubilier on the total (pounds) of PCBs disposed in the New Bedford landfill, nor were records kept on the breakdown by (Aroclor). Cornell Dubilier has estimated that 99% of the PCBs disposed in the New Bedford landfill were in hermetically sealed capacitors with the balance being contained in absorbent materials." From: Santos (4), pages 157 and 158.

"Sources of PCB contaminated liquid wastes generated by Cornell Dubilier (included)... residue from (the) trichloroethylene distillation operation, drippings from valves and connections, unreclaimable PCB drippings from capacitors and racks after impregnation, and contaminated vacuum oil. These contaminated PCB liquid wastes were put in 55 gallon color coded drums, placed on pallets, and stored in an open area at the rear of the building... Typically, wastes were allowed to accumulate in this area until (their quantity warranted shipment to) a disposal company for incineration. In 1971, an estimated 180,000 pounds of PCBs were shipped via railroad tank car and sent to... St. Louis, Missouri for incineration.

During 1973 and 1974,... 489,060 pounds of PCBs were shipped to... Model City, New York for incineration... There are no accurate records on the (quantity) of PCBs incinerated before 1973 or on the type of PCB compound incinerated during any period." From: Santos (4), pages 158 and 159. Liquid wastes may have been disposed at the New Bedford landfill, Sullivan's Ledge or elsewhere.

Cornell Dubilier Electronics Corporation wastewater discharges go (a) to the municipal wastewater treatment plant via the City of New Bedford's sewers and (b) to the Acushnet River via a city storm sewer. Cornell Dubilier's direct discharge permit, NPDES #MA0003930, allows for limited discharge of PCBs to Buzzard's Bay. Monitoring conducted by the Corporation and the state Divison of Water Pollution Control (DWPC) reveal that less than one-half pound of PCBs are annually discharged in this manner. EPA sampling in 1976 found up to 110 ppb PCBs in this discharge (53). The PCB concentration is now generally maintained at or below 5 ppb (56).

Cornell Dubilier's discharge to the municipal wastewater system has proven somewhat difficult to monitor. The presence of combined sewer overflows which apparently allow some seawater to enter during high tides confuses the sampling effort. Nonetheless, EPA sampling in 1976 located one discharge containing up to 2900 ppb PCBs (53). Three grab samples taken by the Commonwealth of Massachusetts in 1981 show that the wastewater in the municipal sewer line downstream of the factory still contains as much as 118 ppb PCBs (41). Sediments removed from the city sewer line were found to contain 660 ppm (47).

September 1978 air monitoring conducted at several sites in New Bedford documented the atmospheric PCB level at Cornell Dubilier to be 767 to 862 ng/m3 (57). These values approach the NIOSH recommended standard of 1.0 ug/m3 (i.e., 1000 ng/m3).

Soils sampled on the Cornell Dubilier property during a June 1981 EPA inspection contained from 4400 to 99,000 ppm PCBs (47). That is, the soil at the Cornell Dubilier property has been found to contain up to 10% PCBs. The playground area immediately west of Cornell Dubilier was filled with dredge spoils during the construction of the nearby hurricane barrier in the mid-1960s. Sediment samples taken in this area reveal that the soils contain PCBs at concentrations below 5 ppm (58).

Cornell Dubilier Electronics Incorporated plant layout. figure from EG&G (55), page 2.

New Bedford Municipal Wastewater Treatment Plant

Located at the southern terminus of Clark's Cove, the New Bedford Waste-water Treatment Plant discharges a daily average of 26.5 million gallons of primary treated wastewater to Buzzards Bay. The historical discharge of PCBs by Aerovox and Cornell Dubilier into the municipal treatment plant has apparently resulted in the contamination of the sewer lines and the treatment facility. Recent monitoring by the Commonwealth of Massachusetts and the city's present consultant, Camp Dresser and McKee, reveals that the facility discharges approximately 200 - 700 pounds of PCBs per year. Wastewater sampling results are presented in Tables 6 through 8.

New Bedford's primary treatment plant was constructed in the early 70's and became operational in 1975. Although Robert Charles Engineering, Inc. designed the facility to remove 50 percent of the solids from the incoming wastewater, it has failed to remove one-half of this amount (25 percent) during all but five of the months during its first five years of operation (October 1975 - July 1980). Self monitoring reports submitted by the treatment plant chemist show that the plant discharged more solids than it received as raw sewage during thirty-one of these fifty-eight months (59).

As depicted in Figure 10, wastewater entering the facility passes through coarse screens to remove bottles, cans, sticks and rags. These screenings are raked, collected and transported to the municipal landfill for disposal. The wastewater next flows through a grit chamber where gravel and coarse sand are removed. This grit is also trucked to the City landfill for disposal.

The wastewater is then pumped to sedimentation tanks where settling of the heavier solids occurs. The liquid effluent from these tanks is chlorinated and discharged to Buzzards Bay via a 3,300 foot long outfall pipe. The sludge which settles to the bottom of these basins is thickened and pumped to centrifuges for dewatering. The dewatered sludge is incinerated on the premises in a multiple hearth incinerator and the residual ash is taken to the landfill where it is dumped with the screenings and grit.

Wastewater treatment plant sludge, incinerator flue gas and residual ash have all been found to contain measurable amounts of PCBs. The only analysis of wastewater grit which has been conducted (in 1981) revealed a concentration of 30 ppm (40). Grease and scum have never been tested for PCBs. Information on PCB levels in sludge and ash is presented in Tables 6 and 7.

In 1977, EPA contracted with GCA Corporation to study the atmospheric release of PCBs during sludge incineration. GCA concluded that the release of PCBs to the atmosphere during incineration ranged from 3 to 10.6 ug/m3. About fifty percent of the PCBs fed into the New Bedford incinerator were destroyed during combustion (60). Other EPA sampling efforts found atmospheric PCB levels in the area of the incinerator to range from 13 to 240 ng/m3 during March 1977 and January 1978 (2,61).

Although the level of contamination is below EPA hazardous waste criteria, the wastewater, sludges and other residuals contain PCB levels much higher than those encountered at most municipal treatment facilities. Local, state and federal entities are presently expending funds to study and design changes to improve the wastewater treatment facility and to accommodate the City's needs.

The wastewater collection system contains approximately thirty combined sewer overflows (CSOs) and these overflows may, during periods of wet weather, release PCB contaminated wastewaters. Monitoring of the CSOs for PCBs and an evaluation of their magnitude, if any, will be addressed in future sewage system studies. An evaluation of industrial discharges and the level of industrial pretreatment needed to protect the municipal facilities and the waters of Buzzards Bay from contamination will also be undertaken in the near future.

The City applied for a waiver of the National secondary wastewater treatment requirement in late 1979 (38). Although the state has not supported this application, the EPA has neither approved nor rejected the City's request. According to the findings of a 1977 EPA study, secondary treatment assists in PCB removal (62). Some questions remain as to the cost effectiveness of secondary treatment and there exist some concerns about how to dispose of the additional quantities of sludge produced (especially if the incineration process is ever terminated).

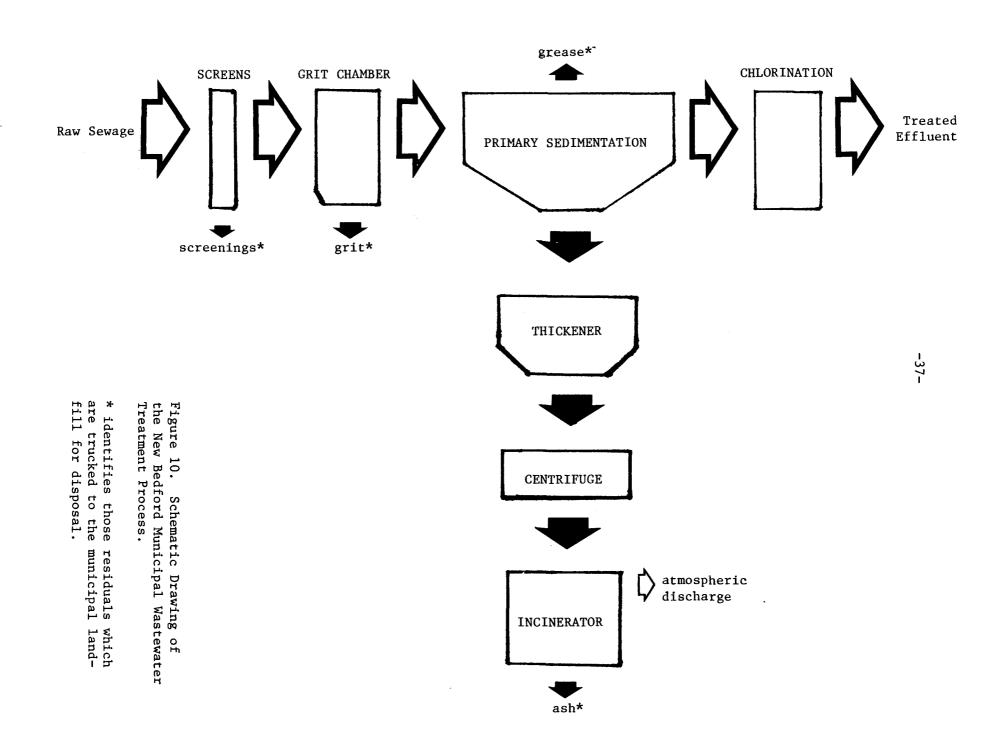


Table 6. New Bedford Wastewater Treatment Plant Analyses for PCBs in Wastewater

Date	Laboratory	Raw Sewage PCBs (ppb)	Treated Sewage (ppb)
7/14/76	EPA (53)	106	119
2/9/77	GCA (60)	NR	3.50
3/1/77	GCA (60) GCA (60) GCA (60) GCA (60)	NR NR NR NR	8.25 3.00 20 5.75
4/79	CDM (38)	NR	21
5/79	CDM (38)	NR	9.3
3/80	DWPC (63)	NR	0.1
2/23/81	DWPC (41)	1.28	8.16
2/24/81	DWPC (41)	ND	1.43
2/25/81	DWPC (41) CDM (39)	7.61 6.2	ND 8.1
2/26/81	DWPC (41)	ND	ND
3/2/81	DWPC (41)	ND	ND
3/3/81	DWPC (41)	ND	ND
3/4/81	DWPC (41) CDM (39)	ND 2.6	ND 5.6
3/5/81	DWPC (41)	ND	ND
6/81	EPA (40)	43	33
3/10 - 3/15/82*	DWPC (64) DWPC (64)	1.6 0.7	3.2 1.8
3/16 - 3/20/82*	DWPC (64) DWPC (64)	2.6 5.8	5.7 4.3
3/21 - 3/25/82*	DWPC (64) DWPC (64)	2.4 2.0	3.9 3.8

ND = none detected

NR = not reported

^{* =} composite samples, run in duplicate

Table 7. New Bedford Wastewater Treatment Plant Analyses for PCBs in Sludge

Date	Labora	tory	Dry weight (ppb)	Wet weight (ppb)
3/26/76	EPA	(53)	73,600	
4/76	EPA	(53)	30,800	
2/9/77	GCA GCA	(60) (60)	5,400 80,000	
3/1/77	GCA GCA	(60) (60)	2,250 2,200	
3/3/77	GCA	(60)	1,400	
2/26/81	DWPC CDM	(41) (39)	330 * 1,526	114
3/2/81	DWPC	(41)	2,900 *	1,016
3/3/81	DWPC DWPC	(41) (41)	520 * 490 *	181 173
3/4/81	DWPC CDM	(41) (39)	410 * 391.6	142
6/81	EPA	(40)	70,000	
9/12/81	DEQE	(58)	9,000	
9/13/81	DEQE	(58)	14,000	
9/15/81	DEQE DEQE	(58) (58)	29,000 16,000	
9/16/81	DEQE	(58)	17,000	
9/17/81	DEQE	(58)	12,000	
10/6/81	DEQE	(58)	9,900	
10/7/81	DEQE	(58)	16,000	
10/8/81	DEQE	(58)	16,000	

^{*}calculated assuming 35% solids.

Table 8. New Bedford Wastewater Treatment Plant Analyses for PCBs in Incinerator Ash

Date	Laboratory	Ash Dry Weight (ppb - PCB)
2/9/77	GCA (60)	2,000
3/1/77	GCA (60) GCA (60) GCA (60)	950 2,350 1,000
3/3/77	GCA (60)	1,700
2/26/81	DWPC (41) CDM (39)	ND 100.5
6/81	EPA (40)	ND

ND = none detected

CHRONOLOGY

New Bedford Area PCB Contamination and Control

1941	Cornell Dubilier Electronics Incorporated begins operations in New Bedford. PCBs are used in the manufacture of electronic capacitors.
1947	Aerovox Corporation first uses PCBs as an impregnation fluid in the commercial manufacture of electronic capacitors.
1971	Aroclor 1016 is substituted for Aroclor 1242 in the manufacture of electronic capacitors at both Aerovox and Cornell Dubilier.
1973	Aerovox Corporation is sold to Belleville Industries, Inc. which subsequently changed its name to Aerovox Incorporated.
1973	Camp Dresser and McKee, under contract to the Southeastern Regional Planning and Economic Development District (SRPEDD), prepares a "Greater New Bedford Solid Waste Study" (48). A number of industrial waste dump sites in New Bedford, Acushnet, Dartmouth and Fairhaven are listed.
1974	New England Aquarium report documents the presence of low level PCB contamination throughout Buzzard's Bay (70).
1976	EPA sampling of Aerovox, Cornell Dubilier and the New Bedford Wastewater Treatment Plant reveal significant levels of PCBs in the industrial and municipal discharges. High levels of PCBs are also found in harbor sediments and marine life.
1976	EPA publishes report titled "New England PCB Waste Management Study" (37). Aerovox and Cornell Dubilier were identified as users of PCBs and the New Bedford Municipal landfill was documented as a disposal location.
1976	Woods Hole Oceanographic Institute initiates PCB sampling of sed- iments and marine life in New Bedford Harbor and Buzzard's Bay.
1976	Massachusetts Division of Marine Fisheries (DMF) initiates sampling of Buzzard's Bay finfish and shellfish for PCBs.
1977	Monsanto (the only American producer of PCBs) ceases the production and sale of PCBs.
1977	Massachusetts DMF initiates sampling lobsters for PCBs.

- Massachusetts Department of Public Health (DPH) issues warnings that lobsters and bottom feeding finfish from a defined area in Buzzard's Bay should not be consumed after learning the foodstuffs contain PCBs in concentrations exceeding 5 ppm. USFDA determines that the situation constitutes an intrastate matter and therefore is not within Food and Drug's jurisdiction.
- 1977 GCA Corporation prepares a report under contract to EPA titled "PCB Compounds Emanating from the New Bedford Municipal Wastewater Incinerator" (60). The study concludes that only two to three percent of the PCBs present in sewage sludge before incineration are released with the flue gas. The scrubber water effluent was found to contain 16 to 37 percent of the PCB input, the ash contained up to fourteen percent.
- 1977 EPA publishes a report entitled "PCBs Removal in Publicly-Owned Treatment Works" (62). This document states that PCB removal in municipal treatment processes is strongly correlated with solids removal, i.e., typical secondary treatment plants can be expected to remove 80-90 percent of the PCBs present in the wastewater, typical primary plants up to 50 %.
- 1977 Aerovox develops a process to remove a large percentage of PCB impregnating fluid from faulty capacitors. Company submits proposal to DEQE requesting approval for the disposal of evacuated capacitors in the New Bedford Municipal landfill. DEQE disallows practice after determining that each ton of evacuated reject capacitors would contain 13 pounds of Aroclor 1016.
- An industrial hygiene survey conducted at Aerovox by the National Institute for Occupational Safety and Health (NIOSH) finds high levels of PCBs in the factory's atmosphere. All 54 air sampling results exceeded the recommended NIOSH limit of 1 ug/m3. The range (measured as Aroclor 1016) of atmospheric PCB concentrations was found to be 10-1260 ug/m3 (33).
- 1977 Aerovox and Cornell Dubilier cease the production of PCB containing capacitors. Dioctyl phthalate (DOP) fluid is substituted for PCB. Contamination of DOP fluid in at least one factory, however may have allowed for the continued manufacture of PCB contaminated electronic capacitors into the 1980s.
- Massachusetts DEQE initiates an annual sediment sampling program with over 20 stations in New Bedford Harbor and Buzzard's Bay.
- 1978 U.S. EPA Region I prepares a summary report of all PCB data in New England titled, "Polychlorinated Biphenyls in New England" (71).
- 1978 Southeastern Massachusetts University conducts a study of PCB levels in Buzzard's Bay shellfish (72). Oysters in the Slocum's River exhibit relatively low levels of PCB contamination.

1978	U.S. EPA study titled "Environmental Assessment of Polychlorinated Biphenyls (PCBs) Near New Bedford, Massachusetts, Municipal Landfill" (9) concluded that atmospheric release of PCBs from the landfill is most likely the principal mode of their escape. Sampling conducted during the summer of 1977 found atmospheric PCB levels in excess of l ug/m3, the NIOSH recommended eight hour exposure limit.
1978	Tibbetts Engineering Corporation submits an unsolicited proposal

- Tibbetts Engineering Corporation submits an unsolicited proposal to DEOE titled "PCBs Analysis of Materials Dredged from the New Bedford Harbor Bottom from 1-30 Years Ago and Subsequently Used as 'Fill' on Dry Land for Various Projects" (69). Ten upland sites which have been filled by materials dredged from New Bedford Harbor during the years 1948 to 1978 are identified in this report.
- 1979 Massachusetts Department of Public Health exercises its legal authority to close areas of Buzzard's Bay to the taking of lobsters, finfish and shellfish because of PCB contamination (44).
- 1979 Massachusetts Representative Roger Goyette forms an ad hoc committee to assess the PCB contamination problem in New Bedford.
- 1979 Camp Dresser and McKee, on behalf of the City of New Bedford, submits an application for a waiver of the secondary municipal wastewater treatment requirement to EPA (38). Data on PCBs in harbor sediments, shellfish and wastewater are included.
- 1980 Aerovox's wastewater discharge permit (NPDES #MA0003379) expires.
- 1980 Gidley Laboratories, Inc. under contract to the Dartmouth Conservation Commission publishes a report on PCB monitoring (68). Gidlab concluded that the PCBs in New Bedford's municipal landfill are not polluting the Dartmouth town wells.
- University of South Carolina graduate students test a PCB air sampler at the New Bedford municipal landfill. Sampling conducted during June detected 25-53 ng/m3 PCBs (Aroclor 1016 plus 1254) upwind of the landfill (73). No downwind results were obtained.
- 1980 DEQE and EPA designate New Bedford Harbor PCB problem as a priority issue in the 1980 State EPA agreement.
- A report on the PCB Data Needs and Dredge Techniques for the Acushnet River New Bedford Harbor Area is prepared by Richard Tomczyk, DEQE, in compliance with 1980 State EPA Agreement (74).
- Secretary Bewick of the Massachusetts Executive Office of Environmental Affairs establishes a PCB task force. DEOE chairs committee and holds monthly meetings to coordinate activities.

- Malcolm Pirnie, Inc. under contract to DEQE/DWPC prepares a Draft "Acushnet River Estuary PCB Study" (75). PCB contaminated areas of New Bedford Harbor and Buzzard's Bay are identified. Additional sampling of sediments, marine life, air and water is recommended. An estimated project cost for removal of 90 percent of the PCB contaminated sediments is given as \$130 million.
- Small scale epidemiology study of New Bedford residents is undertaken by Massachusetts Department of Public Health, Harvard's School of Public Health and the Centers for Disease Control in Atlanta, Georgia (50). Results of the limited blood testing study reveals that those tested are among the highest PCB contaminated in the United States. Fish eaters and industrially exposed workers were selected for study.
- Massachusetts Division of Marine Fisheries prepares a comprehensive "Polychlorinated Biphenyl (PCB) Analyses of Marine Organisms in the New Bedford Area, 1976-1980" (45). The report concludes: "Review of the data collected to date indicate that sampling results are insufficient to establish definitive PCB trends in the biota of New Bedford Harbor." DMF subsequently petitions the Massachusetts Department of Public Health to reopen one area closed to the taking of lobsters due to PCB pollution.
- 1981 EPA coordinates the inspections of four sites in the New Bedford area for compliance with PCB regulations under the Toxic Substance Control Act (TSCA): Aerovox, Cornell Dubilier, the New Bedford Municipal Wastewater Treatment Plant and the Fairhaven Municipal Wastewater Treatment Plant.
- 1981 EPA and State officials meet with representatives of Aerovox and Cornell Dubilier to discuss TSCA sampling results. Both firms prepare limited site clean up and monitoring proposals.
- 1981 Representative Roger Goyette of New Bedford chairs ad hoc/PCB task force meeting at Woods Hole.
- Enforcement of Massachusetts Department of Public Health's lobster closure is fully enacted for the first time since its issuance in 1979. Bureaucratic snafus are overcome and two Environmental Affairs agencies (Division of Marine Fisheries and Division of Law Enforcement) assist DPH's enforcement effort.
- 1981 EPA and Massachusetts Coastal Zone Management personnel visit PCB contamination sites in Bloomington, Indiana; Waukegan, Illionois; and the Upper Hudson River region in New York state.
- Massachusetts Divison of Water Pollution Control (DWPC) Technical Assistance Branch collects over 100 sediment samples and fourteen harbor water column samples for PCB analyses by Cambridge Analytical Associates. Results document sediment concentrations in 1000's ppm in the upper reach of the estuary (42).

DWPC undertakes New Bedford municipal sewer sampling program.

1981

1981 Versar, under contract to EPA, prepares a voluminous report titled "Comprehensive List of Industrial Facilities located Within Region I which May Handle or Use PCB Materials" (76). Ten New Bedford area companies are listed, however neither Aerovox nor Cornell The firms noted include two bakeries, three Dubilier are cited. fish processors, three rubber products manufacturers, an equipment rental firm and a welding equipment manufacturer. 1981 DMF conducts additional lobster sampling and again appeals to DPH for a reopening of Area III to commercial lobstering. DMF's most recent sampling of 42 lobsters captured in November 1981 contain an average PCB concentration of 1.0 ppm. 1981 Massachusetts DEOE nominates New Bedford Harbor as a priority federal Superfund site. EPA Environmental Impact Office initiates a regional New Bedford 1982 PCB Environmental Impact Study. 1982 U.S. Coast Guard joins state and federal agencies in the sampling of harbor sediments. USCG posts a warning sign in the heavily contaminated area seaward of Aerovox. 1982 Massachusetts Department of Public Health, in cooperation with the Centers for Disease Control in Atlanta, publishes the results of a

levels (50,51).

second PCB blood test conducted on New Bedford area residents. Findings support the 1981 results which show that heavy fish eaters and industrially exposed persons generally contain high PCB

CASE HISTORIES OF PCB POLLUTION

Waukegan Harbor, Illinois

The area of contamination encompasses a 37 acre Lake Michigan harbor, an adjacent upland industrial area and a lengthy drainage ditch.

PCB concentrations up to 250,000 ppm (or 25%) have been observed in upland and submerged harbor sediments.

Fish containing PCBs at levels exceeding 100 ppm have been captured within the harbor. Immediately outside Waukegan Harbor, the fish exhibit PCB levels characteristic of Lake Michigan fishes (ie., averaging and occasionally exceeding the 2-5 ppm range).

EPA has prepared a plan for Waukegan Harbor cleanup for implementation as a result of court action or under Superfund. As indicated in EPA's Waukegan Harbor Report (5), one-third of the harbor area is proposed to be dredged. 50,000 cubic yards of dredge spoils would be dewatered in a lagoon on vacant property adjoining the harbor and disposed in an offsite landfill. An additional 100,000 cubic yards or more of contaminated upland soils may be removed for disposal. Alternative approaches being considered include implace confinement.

OMC-Johnson Motors, which apparently used PCBs in hydraulic fluids, and Monsanto Corporation, the former manufacturer of PCBs, are being sued by EPA for the total cost of the cleanup which may equal or exceed \$40 million.

Bloomington, Indiana

PCB contamination of the City's "Winston Thomas" wastewater treatment plant has resulted in the stockpiling of six years accumulation of sludge. This amounts to about 34,000 cubic yards of PCB contaminated material averaging 100-500 ppm.

About two drums of wastewater grit with PCB levels exceeding 1 ppm is collected daily. Transporting and disposing this grit at an EPA approved hazardous waste landfill costs the City \$60 per drum. An equal amount of grit (less than 1 ppm PCB) is disposed at the county landfill at no charge to the City.

Thousands of wastewater PCB samples have been collected and analyzed by City personnel since 1975. Bloomington owns two gas chromatographs for the sole purpose of PCB analyses and employs a half-time technician to operate this equipment.

A five mile stretch of municipal sewer lines was cleaned to remove PCB contaminated sediments at a cost of approximately \$45,000.

Several Westinghouse capacitor dump sites have been located in and around Bloomington, including one uncontrolled dump on City property.

Westinghouse, a large employer in Bloomington, is being sued by the City for over \$300 million.

Upper Hudson River, New York

Forty "hot spots" located in a 35 mile stretch of the Upper Hudson River have been identified. Approximately one million cubic yards of sediments containing PCB levels in excess of 50 ppm are to be removed and disposed in a specially engineered encapsulation site according to the federally funded Environmental Impact Statement.

River sediments have shown concentrations of PCBs up to one thousand ppm. Fish have been found to contain up to 100 ppm.

All fishing is prohibited in the Hudson River from Fort Edward (the location of two G.E. factories) to Troy. In addition, the commercial harvesting of several species of fish (e.g. striped bass) has been prohibited from Troy to New York City. The NYSDEC has determined that these areas will remain closed to fishing until PCB levels fall below 5 ppm in the edible portion of marketable fish for two consecutive years.

Thousands of sediment and biota samples have been collected and analyzed for PCBs by consultants under contract to the NYSDEC. Although some municipal wastewater treatment facilities have been found to discharge measurable levels of the pollutant, little has been done to control these sources.

General Electric and New York State have contributed millions of dollars to studies and the company has proposed several remedial plans.

A staff of NYDEC professionals works full time on the Hudson River PCB reclamation project.

G.E. has agreed to fund engineering studies and to generate remedial action plans for the control of PCBs found at seven dump sites. This may require the construction of clay lined containment facilities.

GLOSSARY

Index to abbreviations and acronyms

ND

NFI

- none detected

- National Fisheries Institute

CDM - Camp Dresser & McKee, Inc. CFR - Code of Federal Regulations C1 - chlorine CSO - combined sewer overflow - Massachusetts Coastal Zone Management CZM - 1,1,1 - trichloro - 2,2 - bis (p-chlorophenyl) ethane DDT - Massachusetts Department of Environmental Quality Engineering DEOE - Massachusetts Division of Marine Fisheries DMF DOP - dioctyl phthalate - Massachusetts Department of Public Health ' DPH - Massachusetts Department of Public Works DPW - Massachusetts Division of Water Pollution Control DWPC EPA - United States Environmental Protection Agency FDA - United States Food and Drug Administration GC - gas chromatograph GCA - GCA Corporation GC/MS - gas chromatograph/mass spectrometer G.E. - General Electric Corporation gpd - gallons per day - International Agency for Research on Cancer IARC - kilogram kg LT - less than **MDPH** - Massachusetts Department of Public Health - milligrams mg mg/g - milligrams per gram, generally equivalent to parts per thousand mg/l - milligrams per liter, generally equivalent to parts per million mg/kg milligrams per kilogram, generally equivalent to parts per million MS - mass spectrometer - National Academy of Sciences NAS

ng/l - nanograms per liter, generally equivalent to parts per trillion

ng/m3 - nanograms per cubic meter

NIOSH - United States National Institute for Occupational Safety and Health

NPDES - National Pollution Discharge Elimination System

NR - not reported

NYSDEC - New York State Department of Environmental Conservation

OMC - Outboard Marine Corporation

OSHA - United States Occupational Safety and Health Administration

PCB - polychlorinated biphenyl
PCDF - polychlorinated dibenzofuran
PCO - polychlorinated quaterphenyl

ppb - parts per billion
ppm - parts per million

RTE - RTE Corporation

SRPEDD - Southeastern (Massachusetts) Regional Planning and Economic Development District

TSCA - Toxic Substance Control Act

ug/day - micrograms per day

ug/kg - micrograms per kilogram, generally equivalent to parts per billion
 ug/l - micrograms per liter, generally equivalent to parts per billion

ug/m3 - micrograms per cubic meter
USCG - United States Coast Guard

USEPA - United States Environmental Protection Agency
USFDA - United States Food and Drug Administration

REFERENCES

- 1. National Academy of Sciences, "Polychlorinated Biphenyls." Washington, D.C. (1979).
- 2. "ABCs of PCBs." University of Wisconsin Sea Grant Public Information Report, WIS-SG-76-125 (1976).
- 3. Miller, S., "The persistent PCB problem." Environ. Sci. Technol., 16, 2, 98A (1982).
- 4. Santos, S.L., "Polychlorinated Biphenyls in Massachusetts: An Assessment of the PCB Problem." Unpublished thesis (1981).
- 5. U.S. Environmental Protection Agency, "The PCB Contamination Problem in Waukegan, Illinois." U.S.EPA Region V, Chicago, Illinois (1981).
- 6. Rule, P., "Summary of Technical Information Concerning Polychlorinated Biphenyls (PCBs)." Unpublished Manuscript, Massachusetts Division of Marine Fisheries, Boston, Massachusetts (July 1977).
- 7. Tucker, E.S., et al., "Activated Sludge Primary Biodegradation of Polychlorinated Biphenyls." Bull. Environm. Contam. Toxicol., 14, 6, 705 (1975).
- 8. U.S. Environmental Protection Agency, "Ambient Water Quality Criteria for PCBs." EPA Report No. 440/5-80-068, U.S. Environmental Protection Agency, Washington, D.C. (1980).
- 9. Stratton, C.L., et al., "Environmental Assessment of Polychlorinated Biphenyls (PCBs) Near New Bedford, MA. Municipal Landfill." EPA Report No. 560/6-78-006, U.S. Environmental Protection Agency Office of Toxic Substances, Washington, D.C. (1978).
- 10. Biemann, K., Massachusetts Institute of Technology, Unpublished class notes for Principles of Toxicology (July 1980).
- 11. Okun, J.D., U.S. Environmental Protection Agency Region V, personal communication (March 1982).
- 12. Gaffey, W.R., "The Epidemiology of PCBs." Presented at American Chemical Society annual meeting (August 1981).
- 13. Malcolm Pirnie, Inc., "Draft Environmental Impact Statement, New York State Environmental Quality Review, PCB Spot Dredging Program Upper Hudson River, New York." New York State Department of Environmental Conservation, Albany, New York (September 1980).

- 14. Massachusetts Department of Environmental Quality Engineering, "Special Analysis." Unpublished laboratory results, Lawrence, Massachusetts (August 1981).
- 15. U.S. Environmental Protection Agency. Unpublished laboratory results, Boston, Massachusetts (March 1982).
- 16. 42 Federal Register 17487 (April 1977).
- 17. Wickizer, T.M., et al., "Polychlorinated Biphenyl Contamination of Nursing Mothers' Milk in Michigan." AJPH, 71, 2, 132 (1981).
- 18. Ahmed, A.K., "The Accumulation Continues." Environment, 18, 2, 6 (1976).
- 19. Kamps, L.R., et al., "PCQs Identified in Rice Oil Associated with Japanese 'Yusho' Poisoning." Bull. Environm. Contam. Toxicol., 20, 589 (1978).
- 20. Miyata, H., et al., "Detection and determination of unknown organochlorinated compounds in Kanemi rice oil caused the Yusho." J. Fd. Hyg. Soc. Jap., 19, 364 (1978).
- 21. Miyata, H., et al., "Detection of unknown organochlorinated compounds in Kanemi rice oils which caused Kanemi Yusho." J. Fd. Hyg. Soc. Jap., 19, 126 (1978).
- 22. Cordle, F., et al., "Human exposure to PCBs and PBBs." Envir. Hlth. Persp., 23, 157 (1978).
- 23. National Institute for the Occupational Safety and Health, "Criteria for Occupational Exposure to PCBs." Washington, D.C. (1977).
- 24. International Agency for Research on Cancer, "Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans." 18, Lyon, France (1978).
- 25. Allan, G.R. and Barsotti, D.A., "The Effects of Transplacental and Mammary Movement of PCBs on Infant Rhesus Monkeys." Toxicology, 6, 332 (1976).
- 26. 44 Federal Register 38330 (1979).
- 27. Barositti, D.A., et al., "Reproductive dysfunction in Rhesus Monkeys exposed to low levels of polychlorinated biphenyls (Aroclor 1248)." Food Cosmet. Toxicol., 14, 99 (1976).
- 28. Blevins, M.R., et al., "Polychlorinated Biphenyls (Aroclors 1016 and 1242): Effects on Survival and Reproduction in Mink and Ferrets." Arch. Environm. Contam. Toxicol., 9, 627 (1980).
- 29. Stone, W.B., et al., "Toxicants in Snapping Turtles." New York Fish and Game Journal, 27, 1, 39 (1980).

- 30. Wiemeyer, S.N., et al., "Residues of Organochlorine Pesticides, Polychlorinated Biphenyls, and Mercury in Bald Eagle Eggs and Changes in Shell Thickness - 1969 and 1970." Pesticides Monitoring Journal, 6, 1, 50 (1972).
- 31. Stendell, R.C., "Summary of Recent Information Regarding Effects of PCBs on Birds and Mammals." Conference proceedings: National Conference on Polychlorinated Biphenyls, U.S. EPA Publ. No. 560/6-75-004, 262 (1976).
- 32. Thompson, N.P., et al., "Polychlorinated Biphenyls and p,p' DDE in Green Turtle Eggs from Ascension Island, South Atlantic Ocean." Bull. Environm. Contam. Toxicol., 11, 5, 399 (1974).
- 33. U.S. National Institute for Occupational Safety and Health, "Industrial Hygene Survey of Aerovox Industries, Inc., New Bedford, Massachusetts." Internal report, Boston, Massachusetts (November 1977).
- 34. 40 C.F.R. s 129.105 (1980).
- 35. "Polychlorinated Biphenyls (PCBs) Manufacturing, Processing, Distribution in Commerce, and Use Prohibitions. 40 C.F.R. s.761 (1980).
- 36. U.S. Department of Commerce, "Advance Reports, 1980 Census of Population and Housing, Massachusetts." Bureau of the Census Report No. PHC80-V-23, Washington, D.C. (March 1981).
- 37. U.S. Environmental Protection Agency, "New England PCB Waste Management Study." U.S. EPA Region I, Boston, Massachusetts (November 1976).
- 38. Camp Dresser & McKee, Inc., "Section 301(h) Application for Modification of Secondary Treatment Requirements for Discharges into Marine Waters, City of New Bedford, Massachusetts." Boston, Massachusetts (September 1979).
- 39. Camp Dresser & McKee, Inc., "Table 1. PCBs in Samples Collected at the New Bedford WWTP in February and March, 1981." Unpublished laboratory results, Boston, Massachusetts (April 1981).
- 40. U.S. Environmental Protection Agency, "Results of Sampling from New Bedford." Unpublished laboratory results, Boston, Massachusetts (June 1981).
- 41. Massachusetts Division of Water Pollution Control, Unpublished water quality worksheet of laboratory results, Westborough, Massachusetts (March 1981).
- 42. Cambridge Analytical Associates, Unpublished laboratory results, Cambridge, Massachusetts (August 1981).
- 43. U.S. Environmental Protection Agency, "Quality Criteria for Water." Washington, D.C. (July 1976).
- 44. Massachusetts Department of Public Health, News release, Boston, Massachusetts (September 25, 1979).

- 45. Kolek, A. and Ceurvels, R., "Polychlorinated Biphenyl (PCB) Analyses of Marine Organisms in the New Bedford Area, 1976-1980." Massachusetts Publication No. 12265-36-100-181-CR, Massachusetts Division of Marine Fisheries, Boston, Massachusetts (1981).
- 46. Massachusetts Division of Marine Fisheries, Unpublished laboratory results. Salem, Massachusetts (November 1981).
- 47. Versar Inc., "Report on Inspection to Determine Compliance with the Federal PCB Disposal and Marking Regulations: Cornell Dubilier Electronics." Unpublished report, Springfield, Virginia (June 1981).
- 48. Camp Dresser & McKee, Inc., "Massachusetts Southeastern Regional Planning and Economic Development District Greater New Bedford Solid Waste Study." SRPEDD, Marion, Massachusetts (March 1973).
- 49. Testimony of Clifford Tuttle, President of Aerovox, before the Subcommittee on Fisheries and Wildlife Conservation, "Hearings on PCBs (Polychlorinated Biphenyls) Impact and Control." (January 28-30, 1976).
- 50. Telles, N.C., letter from Massachusetts Department of Public Health to Rep. Roger R. Goyette re: PCB blood levels in New Bedford residents (May 20, 1981).
- 51. Massachusetts Department of Public Health, "The New Bedford PCB Study Preliminary Findings." Unpublished report (March 23, 1982).
- 52. Versar Inc., "Report on Inspection to Determine Compliance with the Federal PCB Disposal and Marking Regulations: Aerovox Industries, Inc." Unpublished report, Springfield, Virginia (June 1981).
- 53. U.S. Environmental Protection Agency, "Summary of PCB Data, New Bedford, Massachusetts." Unpublished report, Boston, Massachusetts (1976).
- 54. Massachusetts Department of Environmental Quality Engineering, Unpublished laboratory results, Lawrence, Massachusetts (August 1982).
- 55. EG&G, "Contemplated Remedial Action/Sampling Plan for Cornell-Dubilier Electronics Plant Site, New Bedford, Massachusetts." Waltham, Massachusetts (October 1981).
- 56. Cornell Dubilier Electronics, "PCB Discharges from Five Upstream Sources & Calculated Composite Discharge, Drain 001." Unpublished laboratory results, New Bedford, Massachusetts (August 1979 March 1980).
- 57. Siscanaw, R.J., U.S. Environmental Protection Agency internal memorandum to Taylor, E.L., re: "PCB Air Samples from the New Bedford Area." (October 3, 1978).
- 58. Massachusetts Department of Environmental Quality Engineering, Unpublished laboratory results. Lawrence, Massachusetts (October 1981).

- 59. Massachusetts Coastal Zone Management, "New Bedford Wastewater Treatment Plant, operational data." October 1975 to October 1981, Unpublished report, Boston, Massachusetts (March 1981).
- 60. GCA Corporation, "PCB Compounds Emanating from the New Bedford Municipal Wastewater Incinerator." GCA Report No. GCA-Tr-77-18-G, Bedford, Massachusetts (1971).
- 61. U.S. Environmental Protection Agency, "New Bedford Sludge Incinerator Ambient Air Sampling Results for PCBs." Unpublished data sheet, date unknown.
- 62. U.S. Environmental Protection Agency, "PCBs Removal in Publicly-Owned Treatment Works." EPA Report No. 440/5-77-017, U.S. Environmental Protection Agency, Criteria and Standards Division, Washington, D.C. (1977).
- 63. Isaac, R.A., internal memorandum to Jeans, B. re: "PCBs in New Bedford Harbor." Massachusetts Division of Water Pollution Control, Westborough, Massachusetts (January 16, 1981).
- 64. Massachusetts Department of Environmental Quality Engineering, Unpublished laboratory results, Lawrence, Massachusetts (April 1982).
- 65. Shen, T.T. and Tofflemire, T.J., "Air Pollution Aspects of Land Disposal of Toxic Waste." New York State Department of Environmental Conservation Technical Paper No. 59, Albany, New York (March 1979).
- 66. Moon, D., "Draft #2: Aerovox Industries and Cornell Dubilier, PCB Waste Processing." Internal U.S. Environmental Protection Agency Report, U.S. EPA Region I, Boston, Massachusetts (June 1976).
- 67. Weaver, G., "Sediment PCB Concentrations New Bedford Harbor/Buzzard's Bay."
 Unpublished summation of data, Massachusetts Coastal Zone Management,
 Boston, Massachusetts (March 1981).
- 68. Gidley, Laboratories, Inc., "Final Summary Report, Special Summary Evaluation: P.C.B. Monitoring System." Dartmouth, Massachusetts (April 1980).
- 69. Tibbetts Engineering Corp., "Pre-Proposal: PCBs Analysis of Materials Dredged from the New Bedford Harbor Bottom 1-30 Years Ago and Subsequently Used as "Fill" on Dry Land for Various Projects." Unsolicited proposal (April 1978).
- 70. Gilbert, T., et al., "Site Selection and Study of Ecological Effects of Disposal of Dredged Materials in Buzzards Bay, Massachusetts." Unpublished manuscript, New England Aquarium, Boston, Massachusetts (1974).
- 71. Santos, S.L., "Polychlorinated Biphenyls in New England." U.S. Environmental Protection Agency Region I, Air and Haszardous Materials Division, Boston, Massachusetts (May 1978).

- 72. Hatch, W.I., et al., "PCBs in Clams (Mercenaria mercenaria) from the New Bedford Harbor, Massachusetts Area." Unpublished manuscript, Southeastern Massachusetts University, North Dartmouth, Massachusetts (1979).
- 73. Bidleman, T.F., letter from University of South Carolina to Weaver, G., Massachusetts Coastal Zone Management re: atmospheric PCB sampling in New Bedford (May 15, 1981).
- 74. Tomczyk, R., "A Report on the PCB Data Needs and Dredge Techniques for the Acushnet River New Bedford Harbor Area." Massachusetts Division of Water Pollution Control internal report, Boston, Massachusetts (June 1981).
- 75. Malcolm Pirnie, Inc., "Draft Report: The Commonwealth of Massachusetts Acushnet River Estuary PCB Study." Massachusetts Division of Water Pollution Control, Boston, Massachusetts (June 1981).
- 76. Versar, Inc., "Comprehensive List of Industrial Facilities Located Within Region I Which May Handle or Use PCB Materials." Unpublished report, Springfield, Virginia (July 1981).