1-1-2010

2010 Cranberry Management Update: Nutrient Management BMPs

Carolyn J. DeMoranville
University of Massachusetts - Amherst, carolynd@umext.umass.edu
Nutrient Management

Carolyn DeMoranville
UMass Amherst Cranberry Station
SARE Project surveys at Cranberry Update Meetings

Project (LNE 05-217) funded by Northeast Region Sustainable Agriculture Research and Education Program
<table>
<thead>
<tr>
<th>Irrigation/Frost/drainage</th>
<th>January-08</th>
<th>January-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation automation</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>On-off cycling during frost protection</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Drainage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installed submerged drainage last 2 years</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>60% into existing bogs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did other drainage improvements</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Most cleaned or deepened ditches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Would install drainage tiles in a renovated bog</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Note: depth/spacing very variable, most used shallow depth / wide spacing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nutrient management

N-P ratios (by grower reporting)
 All applications 1N to more than 1 P (eg. 12-24-12, 5-15-30)
 All applications 1N to no more than 1 P (eg. 15-15-15, 18-8-18)

Plan to reduce P use
Reduced P use

January-08 January-09
Percent

36 15
34 61
36 51
<table>
<thead>
<tr>
<th>Practice</th>
<th>% Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would prune in lieu of sanding</td>
<td>31</td>
</tr>
<tr>
<td>Schedule irrigation using sensors or floats</td>
<td>21</td>
</tr>
<tr>
<td>Cycle irrigation during frost protection</td>
<td>16</td>
</tr>
<tr>
<td>Improved/installed drainage in the last 3 years</td>
<td>39</td>
</tr>
<tr>
<td>Purposely reduced P use in the past 3 years</td>
<td>51</td>
</tr>
<tr>
<td>Implemented 2 of 5 stated practices</td>
<td>33</td>
</tr>
<tr>
<td>Implemented 3 of 5</td>
<td>14</td>
</tr>
<tr>
<td>Implemented 4 of 5</td>
<td>6</td>
</tr>
<tr>
<td>Implemented all 5</td>
<td>2</td>
</tr>
</tbody>
</table>
Highlights of field research – Supplements
Highlights of field research – New Plantings

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cuttings May 20</th>
<th>Plugs June 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic 47N, 10P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chart (TSP, slow, alt) 62N, 17P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyon 40N, 5P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic chart 50N, 10P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chart (less slow) Nutrelease 43N, 15P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nutrient Management BMPs

- Original Guide produced in 1996
- Some practices revised and some added in 2000
- Much research since
- Revision began in 2009
BMP Guide

- Entire Guide to be revised in 2010
- Looking for grower input
- Final product will be posted online
- Will include hot links (Chart Book sections, references)
Nutrient BMP - General

- Soil temperature important to nutrient uptake
 - Wait for 55F

- Drainage!!
 - Nutrient uptake requires water and oxygen
 - Too wet – no oxygen
 - Too dry – elements won’t dissolve and move to roots
Nitrogen – Nitrogen Cycle

- Ammonium
- Soil T
- Low pH
- Removal in crop (~23 lb in 150 bbl)
Nitrogen – Plant Cycle

- Add N when the plant needs it
- Soil T – best to add when between 55F and 70F
- Rate based on cultivar, growth stage, appearance, tissue test
BMP Phosphorus

Unless you can document a serious deficiency, there is no need to exceed 20 lb/a P.

Test tissue periodically – 0.1-0.2% is the standard range. See timing recommendations in chart book and handout.

Do not apply P to saturated soil
BMP Phosphorus

- The best fertilizer choices have 1N:1P or more than 1N:1P

 - If you use less than 45 lb/acre N, P will be less than 20 lb/acre

- Example more than 1:1 18-8-18
 - With this, 45 lb/acre N gives ~8.5 lb/acre P
Why P reduction?

- Pollution concerns for fresh water
- Clean Water Act mandated TMDL process
Tissue P in normal range

Tissue P below normal range
Tissue P
(2006 regression data)

Y-axis: Tissue P (%)
X-axis: Applied P (kg/ha)

Location 4
Summary - recent field plots

- Trends indicate that some P may be better than no P, although not much of a rate response.

- At one location P in the tissue was below the standard range and there was a response to >20 lb P/acre.

- Further justification for a target P rate of no more than 20 lb P/acre and some justification for lower rate consideration.
Fertilizer and yield – whole bog comparison

(P in lb·a⁻¹; Yield in bbl·a⁻¹)

<table>
<thead>
<tr>
<th>Year</th>
<th>Site 1 P rate</th>
<th>Site 1 Yield</th>
<th>Site 2 P rate</th>
<th>Site 2 Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>17.8</td>
<td>117</td>
<td>24.9</td>
<td>117</td>
</tr>
<tr>
<td>2003</td>
<td>14.4</td>
<td>119</td>
<td>22.3</td>
<td>119</td>
</tr>
<tr>
<td>2004</td>
<td>5.6</td>
<td>172</td>
<td>17.3</td>
<td>196</td>
</tr>
<tr>
<td>2005</td>
<td>16.5</td>
<td>190</td>
<td>24.0</td>
<td>121</td>
</tr>
<tr>
<td>2006</td>
<td>6.4</td>
<td>163</td>
<td>5.7</td>
<td>244</td>
</tr>
<tr>
<td>2007</td>
<td>10.4</td>
<td>156</td>
<td>11.4</td>
<td>136</td>
</tr>
<tr>
<td>2008</td>
<td>5.9</td>
<td>221</td>
<td>7.6</td>
<td>272</td>
</tr>
<tr>
<td>pre-reduction</td>
<td>17.8</td>
<td>117</td>
<td>22.1</td>
<td>138</td>
</tr>
<tr>
<td>post-reduction</td>
<td>9.9</td>
<td>170</td>
<td>8.2</td>
<td>217</td>
</tr>
</tbody>
</table>
Fertilizer and yield – whole bog comparison

(P in lb·a⁻¹; Yield in bbl·a⁻¹)

<table>
<thead>
<tr>
<th>Year</th>
<th>Site 3</th>
<th></th>
<th></th>
<th>Site 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P rate</td>
<td>Yield</td>
<td>P rate</td>
<td>Yield</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>28.8</td>
<td>221</td>
<td>35.5</td>
<td>[65]*</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>19.8</td>
<td>136</td>
<td>32.4</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>21.2</td>
<td>218</td>
<td>28.0</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>26.1</td>
<td>134</td>
<td>24.8</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>7.1</td>
<td>256</td>
<td>12.9</td>
<td>286</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>14.7</td>
<td>197</td>
<td>16.7</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>19.2</td>
<td>220</td>
<td>9.1</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td>pre-reduction</td>
<td>28.8</td>
<td>221</td>
<td>30.2</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>post-reduction</td>
<td>18.0</td>
<td>194</td>
<td>12.9</td>
<td>299</td>
<td></td>
</tr>
</tbody>
</table>

*Insect infestation at this site in 2002
Highlights of field research – Reduced P

All except ‘No fertilizer’ received 25 #N
Highlights of field research – Reduced P

All except ‘No fertilizer’ received 25 #N
New Plantings

- Roots take up nutrients
 - Plugs can be fertilized right away but…
 - May look dormant in first 2-3 weeks
 - Cuttings, all slow after a week or wait ~3 weeks
- Use slow release N
- Limit use of complete N-P-K
- Do not use high P materials
 - Use 1N to 1P or less than 1P
 - Limit to 30 lb P/acre in year 1
Highlights of field research – New Plantings

![Bar chart showing percent vine cover for different plantings and treatments.]

- Organic 47N, 10P
- Chart (TSP, slow, alt) 62N, 17P
- Polyon Slow 40N, 5P
- Organic chart 50N, 10P
- Chart (less slow) Nutrelease 43N, 15P

Colors: Green represents Cuttings May 20, and blue represents Plugs June 30.
Reactive Layer/Polymer

- Controlled and Slow
- Release: Osmotic Diffusion

Factors Effecting Release:
- Coating
- Temp
Resin Coated

- Osmocote

Release: Fissure Movement / Diffusion

Factors Effecting Release:

- Coating
- Water
- Temp
Sulfur-Coated Urea

- Controlled release, faster than others
- Release: Catastrophic Eruption, Microbial, H₂O penetration

Factors Effecting Release:
- Microbial
- pH
- Water
- Temp
Natural Organics

- **Release**: Microbial; SLOW

- **Factors Effecting Release**:
 - Microbial
 - pH
 - Water
 - Temp
Water quality (N)

- If some is good – more is NOT better
 - Disease
 - Overgrowth
 - Poor production
 - AND increased risk to coastal waters

The Physiology of Cranberry Yield
Figure 11.—Yield, tissue N, and rot of cranberries with various N fertilizer rates.*

*Massachusetts-grown ‘Stevens’
Keep fertilizer out of water

- Don’t apply to ditches
- Drop ditch levels
- Divert water pathways or impound
- Avoid applications before heavy rain or irrigation
CES/ SMAST Field Study

Cranberry Bog Nitrogen Loss

<table>
<thead>
<tr>
<th>Bog ID --></th>
<th>EH</th>
<th>PV</th>
<th>BEN</th>
<th>WS</th>
<th>M-K</th>
<th>ASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen Inflow to Bog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigation</td>
<td>0.4</td>
<td>1.5</td>
<td>0.6</td>
<td>0.2</td>
<td>1.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Groundwater</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Frost Protection</td>
<td>0.8</td>
<td>1.8</td>
<td>1.4</td>
<td>0.5</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Pest Management</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Harvest</td>
<td>1.3</td>
<td>3.4</td>
<td>4.5</td>
<td>1.2</td>
<td>4.2</td>
<td>2.9</td>
</tr>
<tr>
<td>Winter Protection</td>
<td>3.0</td>
<td>3.7</td>
<td>5.2</td>
<td>1.4</td>
<td>4.8</td>
<td>4.0</td>
</tr>
<tr>
<td>Total IN</td>
<td>5.5</td>
<td>10.5</td>
<td>12.8</td>
<td>3.6</td>
<td>12.4</td>
<td>11.3</td>
</tr>
</tbody>
</table>

Nitrogen Outflow from Bog						
Drainage/Infiltration	5.7	6.7	10.5	4.6	7.7	7.2
Harvest	2.1	5.3	9.4	4.3	4.5	2.8
Winter	4.0	4.6	6.4	1.7	4.0	5.2
Total OUT	11.9	16.5	26.3	10.5	16.2	15.2

Net Nitrogen Loss (lb/a/yr)=

| | 6.4 | 6.0 | 13.5 | 7.0 | 3.7 | 3.8 |

Nitrogen Output to Downgradient Systems (lb N/acre/yr)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine-Oak Forest</td>
<td>0.4</td>
</tr>
<tr>
<td>Cranberry Bog Nitrogen Output</td>
<td>6.4</td>
</tr>
<tr>
<td>Residential (density 1 per 2.5 acres)</td>
<td>5.7</td>
</tr>
<tr>
<td>Direct Precipitation on Bay</td>
<td>9.8</td>
</tr>
</tbody>
</table>
How can we reduce N output?

- Practice BMPs regarding rate, timing, split applications
- Look at it more as a water problem
 - Amount of flow
 - Direction of flow
 - Pathway of flow
Amount of flow

- Follow recommendations on flooding, drainage, and irrigation

- Research on looking at how to limit groundwater upwelling
 - Compare 2 upwelling sites (10 lb/a/yr) vs.
 - 4 not upwelling sites (5 lb/a/yr)
Direction of flow

- Diversion
 - Tail water recovery
- Can also relate to attenuation

Research on how to limit flow-through situations – by-pass canals?
 - Compare flow-through (8.6 lb/a/yr)
 - To all other types (6.4 lb/a/yr)
Pathway of flow

- Attenuation function of ponds, steams, and wetlands
- Vegetative channels or retention ponds between the bog and the final discharge point
 - research planned on how to best accomplish this
Attenuation

Mill Brook watershed (Howes and Millham, 1991)

- TDN leaving the bog was 0.99 ppm
- Downstream the load had decreased to 0.71 ppm
April 2007 report to DEP
(Woods Hole Group and Teal Partners)
Denitrification in wetlands is the most effective at attenuating N
- NO$_3$ to N$_2$
Denitrification in ponds and streams next best
Uptake by vegetation less effective
Models and Lit. review

MEP conservative estimates

- Ponds – 50% attenuation
 - 2 studies: 39-95% and 84-96%
- Streams – 30% attenuation
 - 30-40% observed in riverine systems
- Salt marshes – 40% attenuation
 - Range of 40-50% in previous Howes work
Water Quality P

- More is not better
 - We saw this in the field experiments earlier

- Again think of it as a water problem
 - Also think about oxygen
Fig. 1. Time course of phosphate release from flooded soils excised from natural cranberry bogs (unmanaged, A) and commercial cranberry bogs in MA receiving either 12-20 kg ha\(^{-1}\) (B) or greater than 22 kg ha\(^{-1}\) (C) applied P fertilizer per season. Note that the Y-axis on A is ~10\(^{-1}\) those of B and C. Bars represent S.E., n = 6 (A) or 12 (B and C).
Laboratory results were similar to those in water collected from a harvest flood.
BMP recommendations

- Apply 20 lb P/a OR LESS
 - Based on the laboratory study, highest risk for P mobilization - bogs receiving >20 lb P

- Allow particles to settle prior to discharge of harvest flood but do not hold the flood for more than ~10 days
Fall fertilizer is not recommended

- Most danger of water quality issues due to saturation

- If indicated by tissue test or vine appearance, use low or no P formulations and limit N to 5 lb/acre.