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ABSTRACT 

Part II: Nutrients 

Buttermilk Bay, located at the head of Buzzards Bay in 
Bourne and Wareham, Massachusetts, has an unsewered watershed 
underlain by highly permeable sand and gravel deposits. 
Several of the most densely populated areas in the watershed 
are near the shore; septic systems are suspected to be a major 
source of the dissolved nitrogen and phosphorus now causing 
eutrophication in the bay. The present study was undertaken to 
assess the impact of septic systems on nutrient concentrations 
in the aquifer underlying Indian Heights, one of the densely 
populated sub-basins of the watershed. 

Background dissolved inorganic nitrogen (DIN) and phosphate
phosphorus (P04 -P) concentrations beneath the pristine, 
upgradient portion of the sub-basin were quite low (about 1.9 
and 0.75 uM, respectively). The mean DIN and phosphate 
concentrations of septic effluent discharged to the sub-basin 
were 2640 uM and 165 uM, respect! vely. 

Nutrient levels and specific conductance in groundwater 
downgradient of the neighborhood cannot be explained by simple 
dispersive mixing of effluent with upgradient groundwater. 
Rather, we estimate that over 99% of the effluent-Po4 and 
between 2 and 26% of the effluent-DIN is removed from solution 
during transport to the downgradient end of the sub-basin. 
Most of the phosphate removal, and probably much of the DIN 
removal takes place in the first few meters of transport from 
septic systems. To the extent that primary production in the 
fresh and marine waters of the Cape Cod/Buzzards Bay region is 
P-limited, septic systems contribute little to eutrophication. 
To the extent that these waters are N-limited, septic systems 
are probably a major contributor to eutrophication . . 
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1. INTRODUCTION 

Buttermill<. Bay, located at the head of Buzzards Bay in 
southeast Massachusetts (Figure 1), has a history of water 
quality problems (Buchsbaum, 1988). The bay is eutrophic, or 
nutrient-enriched, and since 1984 shellfishing has been 
periodically restricted due to the bacterial contamination of 
its waters (Heufelder, 1987; Valiela and Costa, 1988). Up to 
901. of the fresh water influx to Buttermilk Bay is derived from 
groundwater, either via direct discharge or from the baseflow 
of major tributary streams (Williams and Tasker, 1974; Moog, 
1987). It is vital, therefore, to consider the possible role 
of groundwater-borne contaminants when assessing the present 
and future water quality status of Buttermilk Bay. 

Because the drainage basin of the bay is presently 
unsewered, domestic septic systems have been suspected to be a 
major contaminant source to both the groundwater system and the 
bay itself (Heufelder, 1987; Valiela and Costa, 1988). The 
pupose of this study is to test this hypothesis, particularly 
wilh regard to the groundwater system. In Part I of this 
study, the microbial impact of septic effluent was assessed. 
In the present report (Part II), we assess the nutrient impact 
of septic effluent on the groundwater of the basin. Dissolved 
inorganic nitrogen (DIN) and dissolved phosphate-phosphorus 
(P04 -P) were determined in septic effluent samples from the 
basin, "onsite" groundwater samples (collected concurrently 
with the microbial samples described in Part I), and "offsite" 
samples from monitoring wells and sampling devices installed in 
the Indian Heights sub-basin on the western shore of Buttermill<. 
Bay. 

2. THE STUDY AREA 

2.1 Regional Setting: 

The study area is located in southeast Massa ch uset ts, at the 
southern end of the Wareham Outwash Plain (Figure 1). The 
plain was deposited by braided, meltwater streams during the 
retreat of the Buzzards Bay and Cape Cod Bay lobes of the 
Laurentide Ice Sheet, ca. 14,000 yrs. B.P. (Larson, 1982; Stone 
and Peper, 1982). The plain consists of fine to coarse sands 
derived from glacial erosion of the underlying granite of 
Proterozoic age (Williams and Tasl<.er, 1974). Silt and clay 
lenses of variable size are distributed throughout the deposit. 
The aquifer formed by these unconsolidated sands (the Plymouth
Carver Aquifer) has an 
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average saturated thicKness of about 30 meters and total 
storage of about 1.9 billion m3. The recharge rate is 
approximately 50 cm/yr (Williams and TasKer, 1974-; Hansen and 
Lapham, in press). 

2.2 ButtermilK Bay and the Indian Heights Sub-basin: 

ButtermilK Bay, located at the head of Buzzards Bay, 
occupies a pair of Kettles (ice blocK depressions) which were 
drowned by rising sea level subsequent to deglaciation (Figure 
1). The shoreline of the bay is characterized by steep slopes 
of probable ice-contact origin, many of which terminate in 
narrow, fringing salt marshes. 

Located on the western shore of ButtermilK Bay in East 
Wareham (Figure 2), the Indian Heights sub-basin is a high
density residential area. The sub-basin supports 4-93 houses 
and mobile homes on a developed area of 53.2 hectares; mean 
housing density is 9.2. houses/hectare (3.7 per acre). The 
neighborhood is served by a public water supply and private 
septic systems. The northwest portion of the sub-basin 
(extending upgradient of the neighborhood to the groundwater 
divide) is overlain by a pristine area of pine/oaK forest. The 
shoreline of the sub-basin is underlain by a narrow, "fringing" 
salt marsh which has been artificially filled with sand and 
gravel over most of its 1 Km length (A. SarKisian, personal 
communication, 1987). 

3. METHODS: 

3.1 Effluent and Onsite Groundwater Sampling 

Samples of septic effluent and onsite groundwater were 
collected concurrently with indicator bacteria samples, 
according to the protocol described in Part I of this report 
(pp. 11-13). The specific conductance of all samples was 
determined in the field with a YSI Model 30 S-C-T meter;. All 
samples were stored in acid washed, 200 ml plastic bottles at 4-
degrees C; all analyses were performed at the Woods Hole 
Oceanographic Institution. All samples were filtered (0.4-5 um 
Millipore) prior to analysis. Ammonium and phosphate analyses 
(U.S. EPA, 1979; Methods 350.1 and 365.1) were performed within 
6 hours of collection, after which samples were frozen. 
Nitrate + nitrite (NOx) analyses (U.S. EPA, 1979, Method 
353.2) were performed on thawed samples within one weeK. 
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3.2 Offsite groundwater sampling 

"Offsite" samples were obtained :from 5.1 cm (2") water table 
observation wells installed throughout the Indian Heights sub
basin, and from multilevel samplers installed downgradient of 
all houses, but upgradient of the :filled marsh sediments at the 
edge of Buttermilk Bay (Figure 3a). The wells and samplers 
were sited so as to avoid, as much as possible, the effects of 
individual septic system plumes. The 5.1 cm wells were 
installed according to standard solid stem and hollow stem 
auger drilling methods. Well screens were 3.3 m in length 
(except for a 6.2 m screen at IH-1), and were installed so as 
to straddle the mean water table position. 

Three pairs of multilevel samplers were installed. 
Originally designed for use in large scale natural gradient 
tracer tests (Pickens et al., 1981; LeBlanc et al., 1987), the 
samplers were constructed of 3.8 cm I.D. PVC casing, 0.6 cm 
polyethylene tubing, and nylon mesh screen. The vertical 
spacing between ports was 25 cm. Samplers (or sampler pairs) 
had up to 24- ports each. A hollow stem auger drilling rig was 
used to advance each borehole to the required depth (which 
ranged from 6 m to 12 m below the water table, or approximately 
5 to 11 meters below mean sea level). Each sampler was then 
lowered in 3.3 m sections down the 12.5 cm annular space 
afforded by the augers. Subsequent withdrawal of the augers 
allowed the saturated portion of the formation to collapse 
around the sampler casing and ports .. 

Groundwater samples (60 ml) were drawn with a peristaltic 
pump after purging three bore volumes (approximately 150 ml, 
depending upon the depth of the port). Samples were collected 
on four dates between June 1988 and July 1989. Sample storage 
and nutrient analysis methods were identical to those described 
above. 

4-. RESULTS AND DISCUSSION: SUB-BASIN HYDROGEOLOGY 

4-.1 Geology: 

Medi um-to-coarse sands comprise the bulk of the 
stratigraphic section at all drilling sites. Split spoon 
samples collected from boring IH-1 at 1.5 m depth intervals 
show a moderate degree of stratification, with sample median 
grain sizes ranging from 0.190 to 0.785 mm (Figures 4- and 5). 
Sorting was found to be typical of fluvial sands, and ranged 
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from poor to moderate (according to the criteria of FolK, 
1974). At multilevel sampling sites HL-1 and HL-2, a clay/silt 
layer was encountered approximately 6 m below the water table 
(5 m below mean sea level; see Figure 3b, cross section). The 
layer was 3 m thicK at HL-2, and was underlain by a fining 
upward sequence of medium to very fine sands, which continued 
to the bot tom of the borehole, at 11 m below mean sea level. 
The exact areal extent of the layer is not Known. It was not 
encountered at site HL-3, the only other site where drilling 
was continued to a depth of 11 meters below mean sea level. 

4.2 Groundwater Hydrology: 

The total saturated thicKness of the unconfined aquifer 
averages about Jo m in the vicinity of the Indian Heights sub
basin (Williams and TasKer, 1974). This estimate could not be 
confirmed, because none of the borings were continued to 
refusal. Hean depth to groundwater is 12 to 14 meters in the 
topographically flat portions of the sub-basin upgradient of 
the steep, nearshore zone. The aquifer is recharged by the 
infiltration of precipitation and septic effluent. Red BrooK 
and ButtermilK Bay serve as discharge boundaries, and control 
the mean water table configuration of the sub-basin (Figure 
3c). Due to the accretion of natural and effluent recharge in 
the direction of groundwater flow, the mean water table slo~ 
steepens considerably toward the bay (Figure 3c). 

The observation wells showed marKed seasonal variations in 
water level during the November 1986 to January 1988 period 
(Figure 6). Seasonal variations were greatest in the wells 
furthest from the bay, as is typical in coastal aquifers 
(Frimpter and Fisher, 1983). The magnitude of the annual 
variation was observed to be directly proportional to the mean 
water table elevation at each well site (except for the beach 
wells). In mathematical terms, the coefficient of variation 
(COY = standard deviation divided by the mean) was nearly 
constant, and equal to a value of about 201.. Wells screened in 
the beach sediments were tidally influenced, though IH-3S 
showed clear seasonal effects as well (Figure 6). The upland 
wells were apparently not affected by the ButtermilK Bay tidal 
ci_le in a significant way. A~l of the upland wells show the 
effects of a major precipitat'on event in the early days of 
April, 1987, which caused major flooding in New England 
watersheds underlain by less permeable deposits. 
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5. RESULTS AND DISCUSSION: EFFLUENT AND ONSITE GROUNDWATER 

5.1 Results: Dissolved Inorganic Nitrogen (DIN) 

The box plots of Figure 7 show the observed frequency 
distribution of DIN concentration for all effluent and onsite 
groundwater samples. The overall mean effluent concentration 
was 264-1 uM/L (as N; Standard Error of the Mean = +/-12%). The 
mean DIN concentration in the onsite groundwater samples was 
1720 uM/L (SEM = +/-18%). Attenuation i.e., reduction in DIN 
concentration due to both solute removal and dispersive mixing 
with ambient groundwater) from the effluent samples to the 
groundwater samples was therefore approximately 35%, on 
average. Over 99% of the DIN in the effluent samples was in 
the ammonium (NH4-) form, while only 25% of the groundwater 
DIN occurred in this form. 

Effluent and groundwater DIN concentrations varied 
considerably at each site, and bet ween sites (Figure 8). The 
greatest attenuation (89%) was observed at Site 2, which also 
had the thicJ:<.est unsaturated zone (mean infiltration distance = 
3.5 m). Groundwater samples from Site 3, by contrast, actually 
had higher DIN concentrations, on average, than the 
corresponding effluent samples. The reason for this anomaly is 
not clear, but may be due to difficulties in obtaining a 
representative sample -at this site, which is served by a very 
small, narrow septic tanJ:<. (see Figure 11 in Part I of this 
report). 

5.2 Results: Phosphate-Phosphorus 

The frequency distributions of effluent and groundwater 
phosphate concentration are summarized in Figure 9. The mean 
phosphate concentration in the effluent samples was 165 uM/L 
(SEM = +/-8%). In the groundwater samples, the mean P04--P 
concentration was 4-2 .6 uM/L (SEM = +/-23Z); mean attenuation 
was therefore approximately 74-Y..· As with the DIN data, there 
is variability from site to site (Figure 10). The highest 
degree of attenuation was observed at Site 2 (99.6%), while the 
least attenuation occurred at Site 4- (54-Y.). 

5.3 Discussion: Effluent and Onsite Groundwater 

Figures 8 and 10 suggest major differences in the sub
surface behavior of DIN and phosphate ad jacent to the four 
septic systems. Unfortunately, the small number of samples and 
the variability in the DIN, phosphate, and specific conductance 
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data preclude quantitative evaluation of their actual removal 
from the septic effluent during the initial phase of transport 
(i.e., vertical infiltration through the unsaturated zone and 
early transport with flowing groundwater to the 1 meter well). 
The net effect of N and P removal during initial and 
longterm transport will be considered in detail in Section 6 of 
this report. 

Neverthless, the mean molar ratio 0£ N to P in the effluent 
and onsite groundwater samples shows important features. 
First, it should be noted that the mean N:P ratio of the 
effluent samples is 16.4 to 1. This is very close to the 
"Redfield ratio" of 16:1, which was determined from bull<. 
laboratory analyses of marine phytoplanl<.ton and has predictive 
value in marine ecological studies (Redfield et al., 1963; 
Ryther and Dunstan, 1971) 

Second, the N:P ratio in the groundwater samples was 
observed to increase exponentially with increase in the mean 
distance between the base of the effluent leaching system and 
the water table (Figure 11). At the "best case" site, where 
the mean infiltration distance is 3.5 meters, the N:P ratio is 
over 500. Clearly, phosphate is being depleted relative to DIN 
during early transport. If we assume, for the moment, that DIN 
attenuation is due strictly to dispersive mixing with ambient 
groundwater, the relative change in N:P ratio between the 
effluent and the onsite well gives a high estimate of onsite 
phosphate brea:Kthrough to the saturated zone. At Site 2, for 
example, we estimate that onsite P brea:Kthrough is no more than 
3;,:; removal is therefore at least 97;,:, Possible mechanisms of 
subsurface P removal will be considered in Section 6 below. 

In addition to the N:P ratios, one should note the stri:King 
change in the nitrate fraction (NOx-N/DIN) between the 
effluent and the samples from the onsite wells. The mean 
nitrate concentration in the effluent samples was observed to 
be 9.8 uM, or 0,37;,: of the DIN in the samples. The 1 meter 
well samples had a mean NOx concentration of 1292 uM, or 
75;,: of the total DIN. The respective ammonium fractions change 
from 99,5;,: to 25;,:, on average. The degree of conversion to 
nitrate, or "nitrification", was observed to be related to the 
infiltration distance at each site (Figure 12). The 
nitrification process will be discussed more fully in Section 6 
below. The reason for the anomalously high nitrate fraction at 
Site 3 is not :Known; it may be related to the unique character 
of the tan:K at this site, as noted above. 
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6. OFFSITE GROUNDWATER: RESULTS AND DISCUSSION 

6.1 Water Table Observation Wells 

Upgradient wells. A total of 17 samples were 
collected from the water table observation wells located 
upgradient, downgradient, and in the midst of the developed 
portion of the sub-basin (Table 1). As expected, DIN and 
P04-P concentrations in the upgradient samples were quite 
low (4.0 and 0.75 uH, respect! vely), as was the mean specific 
conductance (37 uS/cm). These values are comparable to the 
data of the U.S. Geological Survey for groundwater in 
undeveloped areas of Cape Cod (Frimpter and Gay, 1979; Persl<.y, 
1986). The low specific conductance (about 50:t. lower than 
typical USGS data) is probably due to the unusually young age 
of the groundwater samples, which were collected at the water 
table, in what is presumably a recharge area (judging from the 
position of the wells rel a t1 ve to the groundwater divide). It 
is also important to note that these samples have a DIN 
concentration 80:t. lower than precipitation of the Cape Cod 
region, which averages about 20 uH (Teal and Howes, 1989; 
Frimpter et al., 1988). It would appear that the pine/oak. 
forest na t1 ve to the region (and the underlying soils) are 
efficient scavengers of precipitation-borne nitrogen. 

Hidgradient wells. The mean DIN concentration of the 
"mid-gradient" samples was 616 uH, though the sample set is 
small in size, and the concentrations varied widely between 
wells. This represents a 300-fold increase over the back.ground 
DIN concentration. NOx comprised 99.4:t. of this DIN. 
Phosphate· concentrations in the mid-gradient samples were not 
significantly different from back.ground levels (mean 
concentration = 0.17 uH). The N:P ratio of these samples was 
therefore the highest of any of the sample sets (3620:1). 

Downgradient wells. Though limited in size, the set of 
samples from the downgradient observation wells shows 
significant trends. Three of the wells (Wells IH-3S, 9, and 
10) are screened in the marsh sediments which underlie the 
artificial fill comprising Indian Heights beach. Two of these 
wells (Wells 9 and 10) yielded by far the highest ammonium 
concentrations found in the offsite groundwater samples, while 
their nitrate concentrations were by far the lowest (excluding 
the back.ground wells). Well IH-3D, by contrast, which was 
screened in the outwash sand and gravel underlying the marsh 
sediments, had an NOx and NH4 concentration more 
typical of the mid-gradient wells discussed above. 

The low NOx and high NH4 concentrations observed in 
Wells IH-6 and 10 are probably due to a combination of factors. 



WELL 
# 

s. c. 
us/cm 

Upgrad1ent Wells: 
IH-5 40 
IH-6 34 

Midgradient Wells: 
IH-1 270 
IH-4 188 

IH-11 104 
IH-12 114 

Downgradient Wells: 
IH-3S 120 
IH-3D 215 

IH-9 5900 
IH-10 475 

HH4-H 
uM/L 

0. 7 
o. 7 

<0. 1 
0.4 
1. 5 
0.4 

1. 9 
0. 8 

149. 
55. 3 

18 

HOx-N 
uM/L 

1. 6 
o. 8 

917. 
1060. 

89.0 
186. 

272. 
622. 

1. 0 
o. 68 

DIN 
uM/L 

2. 3 
1. 5 

917. 
1060.4 

90. 5 
186.4 

273.9 
622. 8 
150.0 
56.0 

P04-P 
uM/L 

1. 0 
0. 5 

o. 3 
o. 3 
0. 5 
o. 2 

1. 4 
1. 1 
4. 1 
1. 6 

Table 1. Specific conductance and nutrient data, water 
table observation wells. Values given for upgradient and 
midgradient wells represent mean values from two sampling 
dates: 21 Jan 88 and 9 Jun 88. Values for downgradient 
wells are from samples collected on 21 Jan 88. 
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Given the presence of organic carbon and probable reducing 
conditions associated with the marsh sediments, some dissolved 
NOx could be removed from the aqueous phase by 
denitrification. Conversely, the high NH.q. concentrations 
could result from the reduction of organic-N in marsh sediments 
or the dissimilatory reduction of groundwater nitrate. 
However, the occurence of high-nitrate groundwater in the sand 
and gravel at depth, below the marsh deposit, suggests that not 
all of the nitrate in the aquifer is removed (or transformed) 
by bacterial activity during transport to the bay. 

6.2 Multilevel Samplers 

Introduction. While the above questions deserve further 
study, the limited scope of our investigation constrained us to 
focus on the impact of septic systems on the main aquifer 
system. In order to characterize that impact, it became 
evident that we would need to direct our sampling efforts to 
that portion of the aquifer downgradient of the septic systems, 
yet upgradien t of the possible N source (and sinl<) re presented 
by the fringing marsh sediments underlying the beach (Figures 
3a, b, C). 

We elected to install a small number of multilevel samplers 
along this upland strip for two reasons. First, it was not 
feasible to install a large number of conventional monitoring 
wells on the private properties just upgradient of the beach. 
Second, given the relatively uniform areal distribution of 
septic system N sources in the sub-basin, we postulated that 
variability in solute concentration should largely depend upon 
the dispersive characteristics of the aquifer itself. Recent 
large-scale, natural gradient tracer experiments in stratified 
glaciofluvial settings have observed solute dispersion in the 
transverse-horizontal (y) direction to be 10 to 20 times 
greater than in the vertical (z) direction (i.e., for a given 
groundwater flow velocity in the longitudinal (x) direction; 
Garabedian et al., 1987; Sudicl<y et al., 1987). Because 
vertical dispersion is very limited, one can expect the spatial 
variability in solute concentration to be greatest in this 
direction. Multilevel samplers allow intensive sampling of 
this variability. 

DIN results. A total of 230 samples were analyzed for 
DIN. Concentrations ranged from bacl<ground levels (1-4 uM) to 
1720 uM; samples exceeded bacl<ground in 192 (83%) of the 
samples. The 192 non-background samples were distributed 
normally over the 3 to 550 uM range, with a relatively small 
number of high values (Figure 13). The mean DIN concentration 
of the non-bacl<ground samples was 379 uM; the standard error of 
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the mean was +/-5.5i':. Sampling Site ML-2 yielded the highest 
DIN concentrations, on average, while Sites ML-1 and ML-3 
yielded somewhat lower values (Figure 14-). Differences in DIN 
concentration between sampling sites were small relative to 
their differences with the effluent and onsite sample sets 
(Figure 14-). Over 99.5i': of the DIN, on average, occurred as 
nitrate; ammonium was at background levels (0.7 uM) in 70i': of 
the samples. 

Phosphate results. Phosphate-P was at or below the 
upgradient "background" levels (0.75 uM) in 90i': of the 157 
samples analyzed for phosphate. The median sample contained 
0.12 uM of phosphate-P. The sample set is non-normally 
distributed, as shown by the high mean to median ratio 
(5.84-:1). The 16 above-background samples, which averaged 5.9 
uM in concentration, account for the skewed character of the 
distribution. 

N:P results. The mean N:P ratio in the 14-1 multilevel 
samples with a phosphate concentration above the detection 
limit (0.03 uM) was 3656:1, and the median was 1812:1. Because 
the N:P distribution is also skewed by a small number of very 
high values (caused by samples with extremely low phosphate 
concentrations), the median is a more representative value than 
the mean. 

7. DISCUSSION: NUTRIENT REMOVAL DURING TRANSPORT TO SAMPLERS 

7.1 Estimated Removal 

The Approach. The large number of offsi te samples allows 
a quantitative estimate of N and P removal during transport 
from the septic systems of the sub-basin to the downgradient 
samplers. The relative change in the mean nutrient:specific 
conductance ratio from the effluent to the multilevel sampling 
sites (after correcting for background levels) is a measure of 
the nutrient fraction which "breaks through" to those sites: 

BF=~ 

where, n 

n 

L 
i=l 

c .-C J ~ n gw-1 b • 1 sc . -scb -;- - I 
gw-1 n i=l 

BF = the mean nutrient breakthrough fraction 

Cgw-i• Ceff-i• Cb= the nutrient concentration 
of the ith offsite groundwater and effluent sample, 
respectively, and the mean background nutrient 

( Eq. 1) 
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concentration. 

SCgw-i• SCeff-i• SCb = the specific conductance 
of the ith offsite groundwater and effluent sample, 
respectively, and the mean bacKground specific 
conductance. 

This approach assumes the following: 

1. Specific conductance can be considered a conservative 
property in both the effluent and groundwater. While certain 
ionic species (e.g. nutrients) may be removed during transport, 
the net effect on the specific conductance is assumed to be 
small. 

2. Septic effluent is the only significant source of (non
bacKground) specific conductance and nutrients to the samplers; 
all other solute and nutrient sources in the basin (e.g., 
weathering of the aquifer matrix, road salt, and lawn 
fertilizer leaching) are assumed to be small by comparison with 
septic effluent. 

We would argue that both of these assumptions are valid in 
the Indian Heigh ts sub-basin. Assumption #2 is supported by 
the high degree of correlation between the specific conductance 
and DIN concentration of the offsite groundwater samples 
(r2= 0.89). Major solute contributions from silicate 
weathering, lawn fertilizer, and road salt would presumably 
lead to more seat ter in the data. Assumption #1 is reasonable, 
given the fact that DIN and phosphate comprise only about 1oz 
of the total dissolved solids in septic effluent (Canter and 
Knox, 1985). (To the extent that Assumption #1 is violated, 
this method tends to underestimate the actual nutrient 
removal.) 

The Results. Approximately 86Z of the DIN and 0.34Z of 
the phosphate in the septic effluent is transported to the 
multilevel samplers. The standard error range (SEM) is 74Z -
98Z for the DIN breaKthrough estimate, and 0.19Z - 0,49,. for 
the phosphate estimate. Note that the rather large error 
associated with the phosphate breaKthrough estimate (+/-43Z) 
appears trivial because the actual mean value is so low. 
LiKewise, the relatively small error in the DIN breaKthrough 
estimate (+/-14-r.) appears large, because the mean value is 
quite high. The corresponding removal ranges are 2. - 26r. for 
DIN and 99.5 - 99.8r. for phosphate. 

7.2 Comparison with Other Studies: 
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The nutrient removal estimates obtained above agree closely 
with the observations of other researchers in similar 
hydrogeologic settings (Fetter, 1977; Reneau and Pettry, 1976). 
Septic system plume mapping studies have also shown extremely 
limited phosphate transport relative to DIN at the micro-scale 
(Childs et al., 1974; Robertson et al., 1989). 

In an extensive study of nutrient removal during early 
transport in a glacial outwash setting, Alhajjar et al. (1989) 
report phosphate removals of over 99.5i': in the first few meters 
of transport from all septic systems studied; nitrogen removals 
ranged from 4 to 49i':. Ironically, the poorest nitrogen removals 
(90i': confidence interval = 4-8i':) were associated with houses 
using strictly non-phosphate detergents (which were originally 
introduced to help prevent the eutrophication of surface 
waters). Those houses using strictly phosphate detergents 
showed much higher rates of N removal (90i': C.I. = 43-49i':). The 
investigators suggest that phosphate-rich effluent stimulates 
the growth of denitrifying bacteria in the clogging mats below 
septic leaching systems. (The use of phosphate detergent had no 
effect on groundwater phosphate concentrations.) 

7 .3 Phosphate Removal Processes 

The highly efficient removal of dissolved phosphate during 
subsurface transport can be attributed to a variety of 
adsorption and precipitation reactions. Because phosphate ions 
(which occur primarily as H2POq. and HP04 over a pH 
range of 4-10) are negatively charged, it is sometimes asserted 
that adsorption is not an important process of phosphate 
removal (e.g. Freeze and Cherry, 1979, p. 422). While it is 
true that the net negative surface charge common to c Jay 
minerals does not favor phosphate adsorption, phosphate has a 
strong affinity for the oxides of iron and aluminum (Barrow, 
1983; Goldberg and Sposito, 1984). As is the case with most 
adsorption reactions, this process is reversible (Van der Zee 
et al., 1987). 

The granite-derived sand and gravel materials underlying the 
aquifers of the Cape Cod region are relatively rich in oxides 
of Fe and Al, and extremely low in clay minerals (less than 
0.1i':; Barber, 1987). These metal oxides occur both as primary 
mineral grains of igneous origin, and as secondary coatings on 
other grains. Hence, in the Cape Cod geologic set ting, 
adsorption is probably an important mechanism of phosphate 
removal. 

Precipitation, the second removal mechanism, is important 
because phosphate is highly insoluble with respect to dissolved 
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species of ferric iron (Fe+++), aluminum (Ai+++), and 
calcium (Ca++), and will combine with extremely low 
concentrations of these cations to form the minerals strengi te, 
varisi te, and hydro:Jlapa ti te, respectively (Freeze and Cherry, 
1979, p. 423). A proclss known as "diffusion precipitation", 
whereby phosphate ions convert metal oxides into phosphate 
minerals by means of bulk ionic substitution, has also been 
identified (Van der Zee et al., 1989). Unlike simple 
adsorption, this process is considered to be essentially 
irreversible. 

7 .4 Nitrogen Removal Processes 

Our data confirm the frequently asserted statement (e.g. 
Frimpter et al., 1988, p. 21) that DIN removal is minimal in 
the sand and gravel aquifers of the Cape Cod/Buzzards Bay 
region. There are several reasons why dissolved nitrogen is so 
ubiquitous in the groundwater systems of the region: 

1. The glaciofluvial sediments which comprise the major 
aquifers are very low in clay (0.1%; Barber, 1987). Hence, 
adsorption of ammonium cations to clay minerals during early 
(onsi te) transport of effluent is minimal. 

2. The pH of both pristine and sewage contaminated 
groundwater in the region ranges from neutral to acid (LeBlanc, 
1984). Because dissolved ammonia gas NH3(aq) is unstable 
with respect to ammonium ion (NH4 +[aq)) below a pH of 9 
(Hem, 1985, p. 126), ammonia volatilization is not a 
significant N removal mechanism. 

3. The near surface groundwaters of the Cape Cod region are 
rich in dissolved oxygen (Frimpter and Gay, 1979). This is due 
to the high recharge rate, the relatively non-reactive silicate 
minerals of the aquifer matrix, and the extremly low organic 
carbon content of the matrix (about 0.01%; Barber, 1987). 

In unsewered areas of the Cape Cod region, the biochemical 
oxygen demand (BOD) associated with sewage disposal is 
dispersed across a large number of small discharge points 
(septic systems). The high dissolved oxygen content of the 
ambient groundwater, in concert with the dispersed character of 
the effluent-imposed BOD facilitates bacterial nitrification of 
effluent ammonium. The nitrification process is oxygen 
limited, and its net stoichiometry can be expressed as follows 
(Fenchel and. Blackburn, 1979): 
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Our data indicate that nitrification of septic effluent occurs 
very rapidly in the Indian Heigh ts study area. Nitrification is 
promoted in the Indian Heights sub-basin by the substantial 
thicKness of the unsaturated zone (average depth: 12-14 meters 
except near the beach). 

4. Nitrate is a stable species which is easily advected with 
flowing groundwater. UnliKe phosphate, it does not form 
insoluble precipitates with metal cations. LiKe chloride, it 
has both a negative charge and a large ionic radius and is 
therefore not easily adsorbed to mineral surfaces (Fetter, 
1988, p. 346). 

5. Denitrification (the bacterial reduction of nitrate to 
N2(g) or N20(g) under reducing conditions, in the 
presence of organic carbon) is not generally favored by well 
oxygenated, low organic-C, sand and gravel aquifers. 

These five factors explain why DIN, as nitrate, is so 
widespread in the groundwater of the Cape Cod region. To the 
extent that it occurs at all, removal of anthropogenic nitrogen 
ta}{es place in distinct micro-environments where the above 
conditions do not prevail. For example, what could be called 
"early denitrification" may be important beneath some septic 
systems, as suggested by Alhajjar et al. (1989). Our data 
suggest that such onsite denitrification is minimal in the 
Indian Heights study area, perhaps because phosphate detergents 
are no longer in general use in this country. In addition, 
what could be called "late denitrification" probably affects 
groundwater during its final stage of transport through or 
beneath fringing salt marshes or freshwater wetlands, as well 
as through lacustrine and subtidal bottom sediments. A great 
deal more field research on the complex hydraulics and 
biogeochemistry of these micro-environments is needed. 

7. CONCLUSIONS: 

1. The dissolved inorganic nitrogen and phosphate
phosphorus concentrations beneath the undeveloped, upgradient 
portion of the Indian Heights sub-basin are quite low (about 
1.9 and 0.75 uM, respectively), and similar to those from other 
pristine areas in the Cape Cod/Buzzards Bay region. 

2. The observed DIN concentration increases by a factor 
of 200 (to 379 uM) by the time the groundwater reaches the 
downgradient end of the sub-basin, some 300 meters from the 
edge of the pristine area. The average groundwater phosphate 
concentration remains at bacKground levels. 
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3. The DIN and phosphate concentrations of septic 
effluent discharged to the sub-basin are approximately 26'!0 uM 
and 165 uM, respectively. 

4. Virtually all (over 99.5r.) of the effluent phosphate 
is removed from solution during transport from septic systems 
to the downgradient sampling points. Between 2r. and 26r. of the 
effluent DIN is removed over this same path. Large depths to 
groundwater (12-14 meters) do 11 t tle to promote nitrogen 
removal in this setting. 

5. The virtual elimination of effluent-derived 
phosphate, much of which occurs during early transport, can be 
attributed to its physical chemistry. The persistence of 
dissolved inorganic nitrogen, as nitrate, can be attributed 
partly to its physical chemistry, and partly to the low clay, 
low organic-C, and highly oxidizing character of the sand and 
gravel aquifer underlying the sub-basin. 

6. To the extent that the fresh and marine waters of the 
region are P-limi ted in their primary production, 
eutrophication -from septic systems poses little threat. To the 
extent that these waters are N-limited, septic systems pose a 
major eu trophica tion threat. 
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