

Acushnet River

P

WATER QUALITY STUDY 1971

Č

Water Resources Commission Division Of Water Pollution Control Thomas C. McMahon Director

ACUSHNET RIVER - NEW BEDFORD HARBOR

WATER QUALITY STUDY 1971

PREPARED BY

WATER QUALITY MANAGEMENT SECTION DIVISION OF WATER POLLUTION CONTROL

MASSACHUSETTS WATER RESOURCES COMMISSION

BOSTON

JANUARY, 1972

Publication Number: 6046

Approved By: Alfred C. Holland Purchasing Agent

DEDICATION

This report is dedicated to the memory of Manuel Brown, Fairhaven Shellfish Warden, who passed away last Fall. Manny will be remembered fondly by all of us who knew him and worked with him during the survey. His willingness to help in any way he could as well as his good humor were a great help to the survey.

FOREWORD

Water Pollution problems in the Acushnet River and New Bedford Harbor were studied extensively in the summer of 1971 by the Southeast Regional Office and the Water Quality Management Section of the Division of Water Pollution Control. Increasing awareness of these problems by the local citizenry brought about a great deal of interest and cooperation, particularly from the Town of Fairhaven and the City of New Bedford.

Following a series of meetings and preliminary investigations, the survey crew arrived in New Bedford on July 12. Field lab facilities were set up at the new Fairhaven Sewage Treatment Plant. Five photosynthesis stations were established employing the light and dark bottle technique. Assistance was provided by Romeo Mosakowski, Shellfish Warden for the City of New Bedford. Sampling began early the following morning as Six locations on the Acushnet River and five on the outer harbor (beyond the Hurricane Barrier) were sampled four times over a 24-hour period. The outer harbor stations were sampled at two depths, one foot below the surface and one foot above the bottom. Dissolved oxygen was measured for each sample at the field lab. The four samples from each location were composited into one and conveyed to the Lawrence Experiment Station of the Mass-achusetts Department of Public Health for analysis. Procedures set forth in Standard Methods for the Examination of Water and Wastewater (13th edition, 1971, American Public Health Association, New York) were followed in all tests. The sampling was repeated on July 15.

During the first week of sampling, most of the industries which discharge wastes to the harbor were closed. They reopened on July 19. The sampling that week therefore concentrated on the inner harbor. Two new photosynthesis stations were established in the area of the industries and the two original stations in the harbor behind the Hurricane Barrier were continued. Fairhaven Shellfish Warden Manuel Brown assisted Division personnel in this study. Three locations in the inner harbor were sampled. East, west and middle points at each location, top and bottom were sampled four times daily on July 20 and 22. Testing procedures were the same as the first week. Samples of bottom sediment were collected from all stations on July 21. Results of the survey were verified and placed in tabular form by engineers of the Water Quality Management Section.

Later in the summer, personnel from the Southeast Regional Office, assisted by U.S. Coast Guard Reserves, conducted a shoreline survey of the harbor in which all discharges were located and identified. Details and results of that survey were prepared for this report by the regional office.

ACUSHNET RIVER - NEW BEDFORD HARBOR WATER QUALITY STUDY

	. <u>.</u>
TABLE OF CONTENTS	
nevia sentence, interaction anguate Actuality sourcement and	
baatbab ank server beviewer. And several s	PAGE
List of Tables	2
List of Figures	4
Water Pollution Control Program	5
Measures of Water Pollution	10
Basin Description backand and angentic area and and	15
List of Sampling Stations the backet is and intervented in the second states of the second st	16
Map of Sampling Stations	17
1971 Water Quality Data	18
Shoreline Survey	62
er kommen fritida i offi Alfratistis kommuni fin mi e New 20 - Aree Sator Fraince	уż
an and the sheet of a substance was badded for an Second	
್ಷವಾಗಿ ಸಂಗ್ರಹವಾದಿ ನಿರ್ದೇಶನ ನಿರ್ದೇಶನ ನಿರ್ದೇಶನ ಸಂಗ್ರಹವಾಗಿ ಸಂಗ್ರಹವಾಗಿ ಸಂಗ್ರಹವಾಗಿ ಸಂಗ್ರಹವಾಗಿ ಸಂಗ್ರಹವಾಗಿ ಸಂಗ್ರಹವಾಗಿ ವಿಷ	
ng na sana ang kana kana kana kana kana kana ka	
n An an an Anna Anna Anna Anna Anna Anna	
Rock Bard Bard and Andreas and Andreas And Andreas and	•

LIST OF TABLES

2

G

Ć

<u>NO.</u>	NAME	PAGE
1.	Sampling Station Locations	16
2.	Time, Temperature, Dissolved Oxygen Acushnet River	20
3.	Time, Temperature, Dissolved Oxygen New Bedford Outer Harbor	21
4.	Time, Temperature, Dissolved Oxygen New Bedford Inner Harbor	23
5.	Temperature, Dissolved Oxygen Acushnet River - New Bedford Outer Harbor.	24
6.	Temperature, Dissolved Oxygen New Bedford Inner Harbor	25
7.	5 Day Biochemical Oxygen Demand Acushnet River - New Bedford Outer Harbor	26
8.	5 Day Biochemical Oxygen Demand New Bedford Inner Harbor	28
9.	Long Term Biochemical Oxygen Demand	29
10.	Suspended Solids, pH, Alkalinity Acushnet River - New Bedford Outer Harbor	30
11.	Suspended Solids, pH, Alkalinity New Bedford Inner Harbor	32
12.	Coliform Bacteria, Acushnet River - New Bedford Outer Harbor	33
13.	Coliform Bacteria, New Bedford Inner Harbor	35
14.	Total Phosphate, chlorides, chlorophyll A Acushnet River - New Bedford Outer Harbor	36 ·
15.	Total Phosphate, Chlorides, New Bedford Inner Harbor	38
16.	Color, Turbidity, Specific Conductance, Acushnet River- New Bedford Outer Harbor	39
17.	Color Turbidity, Specific Conductance New Bedford Inner Harbor	41

No.	NAME	Page
18.	Nitrogen Concentrations, Acushnet River - New Bedford Outer Harbor	42
19.	Nitrogen Concentrations New Bedford Inner Harbor	44
<u>-20.</u>	Microscopical Examination, Acushnet River - New Bedford Outer Harbor	45
21.	Microscopical Examination, New Bedford Inner Harbor	46
22.	Biological Examination of Sediment	47
23.	Heavy Metal Concentrations	48
24.	Photosynthesis Summary	49
25.	Photosynthesis Data July 12-13, New Bedford Harbor	50
26.	Photosynthesis Data July 12-13, Acushnet River	51
27.	Photosynthesis Data July 13-14, New Bedford Harbor	52
28.	Photosynthesis Data July 13-14, Acushnet River	53
29.	Photosynthesis Data July 14-15, New Bedford Harbor	54
.30.	Photosynthesis Data July 14-15, Acushnet River	55
31.	Photosynthesis Data July 15-16, New Bedford Harbor	56
32.	Photosynthesis Data July 15-16, Acushnet River	57
33.	Photosynthesis Data July 19-20, New Bedford Inner Harbor	58
34.	Photosynthesis Data July 20-21, New Bedford Inner Harbor	59
35.	Photosynthesis Data July 21-22, New Bedford Inner Harbor	60
36.	Weekly Photosynthesis Summaries, Stations 2 and 3	61

. **3**

>

2.45

١,			ĩ	٩,	1	1	
	٠	۰					

4

Č

2

ittaland vak + torvi	LIST OF	FIGURES
----------------------	---------	---------

	化脱基化脱基 化氯化化化化化化化化化化化化化化化化化化化化化化化化化化化	
NO.	en estructura de la seconda de la seco <mark>name</mark> , conservadores de la seconda de la seconda de la seconda de la seconda	PAGE
1.	Sampling Station Locations	17
2.	Selected Data New Bedford Inner Harbor	18
3.	Selected Data New Bedford Outer Harbor	19
4.	Dissolved Oxygen New Bedford Inner Harbor	22
. 5.	BOD ₅ New Bedford Inner Harbor has a state of the state	27
6.	Suspended Solids New Bedford Inner Harbor	31
7.	Coliform Bacteria New Bedford Inner Harbor	34
8.	Clorides New Bedford Inner Harbor	37
9.	Turbidity New Bedford Inner Harbor	40
10.	Ammonia Nitrogen New Bedford Inner Harbor	43
	energi seestaan jali el gir baaki jaar altaa saat	, UV
56 56	an a	- 18 · ·
2 A	geneist swartsan je Stinki vijet ve afferterterterterte	, ŝŧ
	and a manage way of the second and the second s	, E.F.
ev.	uchiel complete set out the president later whe	
j×.	neer beite neer zie en zelanden. Naam en staar die en die die die die die die eerste aander die eerste aander a	ŧ.
, ¹ •	to terno to genera de la seconda a destana a destana a destana A secondaria de la secondaria	

COMMONWEALTH OF MASSACHUSETTS

WATER POLLUTION CONTROL

and the provest

HISTORICAL BACKGROUND

N 8 9 - 44

1.5.1

المحت الأقباري للأخل الألمان التراكي الاستراكي الاستراكي . أوليا التراكية التراكية الاستراكية وال

and and the second and

· · · · · · · · ·

5 **.** * * * . . .

تربى بەرىمى بىر ي

1999.c

The need for governmental control to safeguard the waters of the Commonwealth was first recognized by the Massachusetts General Court in 1886. In that year, a State Division of Sanitary Engineering was established and given the responsibility to examine and advise on public health problems relating to water. In 1945, the control of water pollution was strengthened with the enactment of legislation which authorized the Massachusetts Department of Public Health to adopt water pollution regulations.

The Federal Government became deeply committed to the abatement of water pollution in 1956 when Congress passed the Federal Water Pollution Control Act. This Act provided for limited financial aid by the Federal Government to municipalities constructing pollution abatement facilities. Amendments to the Act increased the amount of aid available to 50 percent of the construction cost, provided that the State agreed to pay not less than 25 percent and had established Water Quality Standards for all its waterbodies and an enforcement program for reaching and maintaining these standards. The standards were subject to the approval of the Secretary of the Interior, who was given the authority to adopt standards for any State which failed to do so. An additional 5 percent grant was made available to any project which was consistent with the master plan of a regional planning agency for pollution control.

MASSACHUSETTS CLEAN WATERS ACT

1 1 A. . . .

In order to establish a strong water pollution control program in the Commonwealth in coordination with the provisions of the Federal Act, the General Court passed the Massachusetts Clean Waters Act in 1966. This Act provided for the establishment of a Division of Water Pollution Control under the Water Resources Commission. The Division was given comprehensive duties and responsibilities including the establishment of Water Quality Standards, the classification of all waters in the Commonwealth, and the establishment of a schedule for the implementation of the standards. To effect compliance with this schedule, the Division was authorized to issue orders to violators or to institute criminal proceedings. The Act further made it unlawful for any person to discharge into the waters of the Commonwealth any substances which would cause or contribute to a condition in contravention of the water quality standards, or to make or permit an outlet for the discharge of wastes without obtaining a permit from the Division. The Act has been strengthened each year through legislative amendments.

· · · · · ·

WATER QUALITY STANDARDS

1 de 1

\$ 1. J. S.

و به ایک او د د د

1. S. S. S. S. S. S. S.

the terms of the

an generation of the A second s

. - C. - A.

1. . . .

, the title of the

A CONTRACTOR CONTRACTOR 898 (1874) (1877 -

Way & Astron

After public hearings in the Spring of 1967, the Division of Water Pollution Control established water quality standards for all interstate, intrastate, and coastal waters in the Commonwealth. Included in the standards were present and proposed use classifications for each waterbody, critical limits of the amounts of various pollutants allowable in the waters for each use classification, and a plan for the implementation and enforcement of the standards. In August, 1967, the standards were approved by the Secretary of the Interior, making Massachusetts the third state in the union to have such standards approved.

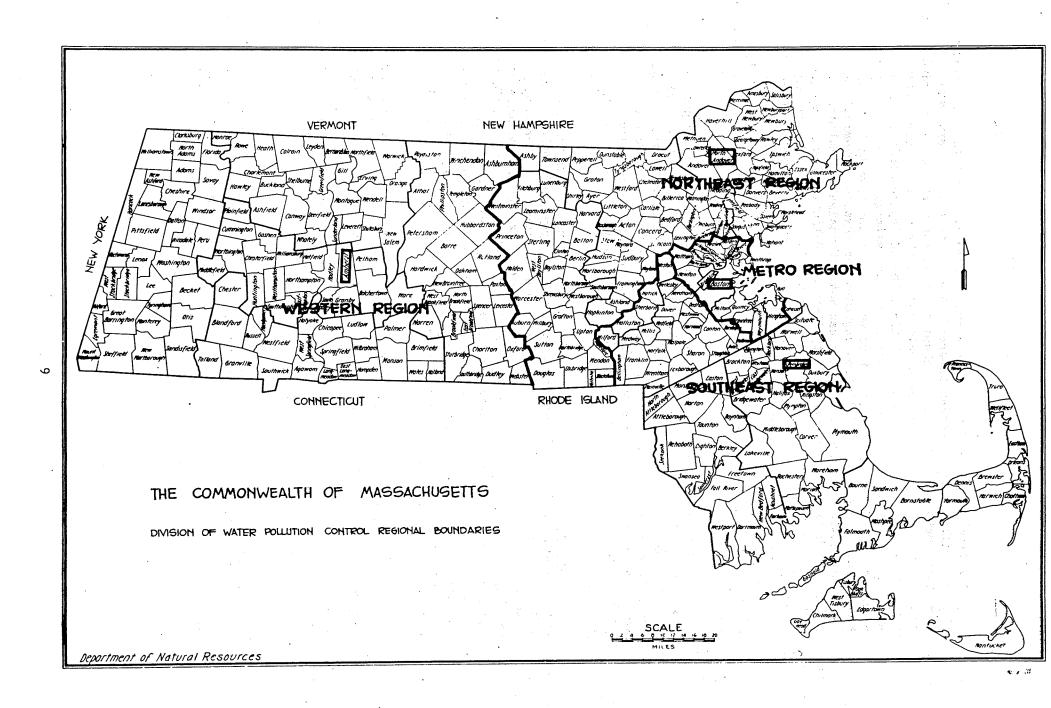
2.5. ORGANIZATION OF THE DIVISION OF WATER POLLUTION CONTROL

医乳红 化热力化 The main office of the Division of Water Pollution Control is stands located in the Leverett Saltonstall Building in Boston. This office consists free colorfean administrative staff, a legal counsel, and operational sections to administrate the broad functions of the program. These sections reflect the major areas of concern in the area of water pollution control. Their duties are as follows:

CONSTRUCTION GRANTS - In an era of rapidly rising construction costs, financial assistance is imperative for municipalities planning pollution abatement facilities. Legislation enacted concurrently with the Massachusetts Clean Waters Act provided a 150 million dollar bond issue to provide such aid. This amount was increased by 250 million dollars by legislative action in 1970. In order to be eligible for aid, a basical frequency project must be approved by the Division. The Construction Grants Section reviews engineering reports, final plans and specifications for municipal treatment facilities and applications for grants for the following purposes:

- 1) Comprehensive planning of wastewater treatment facilities.
- 2) Preparation of final plans and specifications for wastewater treatment facilities.
- 3) Construction of wastewater treatment facilities.
- 4) Prefinancing of Federal grants for wastewater treatment facilities.

ENFORCEMENT - The schedule for implementation of the Water Quality Standards established dates for reaching the several steps of a pollution abatement program for each of some 550 known municipal and industrial polluters. The Enforcement Section is responsible for effecting compliance with this schedule through cooperative action where possible and legal measures when necessary.


INDUSTRIAL WASTES - The large number as well as the diversity of the industries discharging wastes to the waters of the Commonwealth requires critical review of reports and plans for industrial treatment facilities. In reviewing proposed designs, engineers of the Industrial Wastes Section meet with the industries and their consulting engineers to insure installation of the most efficient pollution abatement facilities. Additional activities of this section include inspection of newly-operating industrial treatment plants, processing of application for certification of treatment facilities as eligible for tax benefits provided under the General Laws, assisting in locating new sources of pollution and establishing implementation schedules, evaluation of monthly operating reports from existing industrial waste treatment plants, and directing pilot plant studies on the treatment of industrial wastes.

<u>OIL POLLUTION</u> - Increased concern with the detrimental effects of oil pollution led to the passage of the Massachusetts Oil Pollution Act of 1968, which was further strengthened in 1970. This Act provided for the immediate clean-up of all oil spills and the licensing by the Division of all marine oil terminals and waste oil collectors. The Oil Pollution Section initiates the cleanup of oil spills when required to protect water quality, finances the operation, then recovers funds from the source of the spill. The section also maintains a continuing program of research to develop and evaluate new methods for oil pollution abatement.

<u>OPERATION AND MAINTENANCE</u> - In order to effectively abate water pollution, a treatment plant must be operated properly. The Operations and Maintenance Section attempts to insure proper operation through plant inspections, review of monthly operating records, plant personnel training programs, and, in extreme cases, direct orders from the Division and refusal to approve applications for permits for new sewers. The mandatory certification of plant operators should upgrade the quality of plant operation throughout the Commonwealth.

<u>RESEARCH AND TRAINING</u> - The Massachusetts Clean Waters Act authorized 10 million dollars over a 10-year period for a research and demonstration program. This program is designed to provide increased knowledge in the areas of analysis and abatement of water pollution. Research grants are made to consulting engineers, universities, and research institutions to conduct particular projects. Training activities of this section include treatment plant operator training, in-service training of Division personnel, and a scholarship intern program for engineering students. WATER QUALITY MANAGEMENT - In order to properly solve water pollution problems, it is necessary to consider entire river basins rather than particular waste discharges. The waters of the Commonwealth are divided into 17 major river and coastal basins. The Water Quality Management Section conducts surveys of these basins and analyzes and publishes the results. Where sufficient data is available, a river is analyzed by a computer model. Such models simulate the level of dissolved oxygen and other parameters along the entire length of a stream, enabling section personnel to determine the degree of treatment required at each discharge to maintain the desired level. This section also develops basin plans which present alternative solutions to pollution problems in a particular basin.

<u>REGIONAL OFFICES</u> - The Division maintains four regional offices which have responsibility for particular river basins. The Regional Office locations and regional boundaries are indicated on the attached map. Besides assisting the seven sections of the central office in their functions, the regional offices investigate complaints of water pollution, conduct field investigations of discharges, visit construction sites to supervise progress on pollution abatement projects, inspect and sample wastewater treatment plants to provide precise data on their efficiency of operation, conduct local operator training courses, and provide liason between local groups and the Division. Regional personnel acquire an intimate knowledge of local problems which is invaluable to the Division's planning.

MEASURES OF WATER POLLUTION

The term "water pollution" has acquired many connotations. Literally, the word pollute means "render impure;" thus, in this sense, any water containing matter other than its chemical constituent of two parts hydrogen to one part oxygen would be considered polluted. Such "pure" water, however, is never found in natural bodies; the ecological balance in a waterbody is dependent on the presence of other material. In this report, water pollution refers to a condition which is in contravention of the Water Quality Standards. Pollution degrades the physical, chemical, and bacterial quality of a waterbody and can make it unsightly, malodorous, and a health hazard, its uses sharply limited. Pollution occurs mainly through the discharge of wastes from homes and industries. The various types of pollution are: (1) oxygen-demanding, such as originates from domestic sewage and certain industrial wastes, (2) toxic materials as in some industrial wastes, (3) radioactive, (4) thermal, (5) bacterial, (6) oil, and (7) physical. Stormwater runoff from both urban and rural areas can also add pollutants to a waterbody.

The extent of pollution in a particular waterbody is determined by measuring certain chemical and biological constituents and properties. Chemical constituents, such as dissolved oxygen, phosphates, and metals, are generally measured in milligrams per liter (mg/l); since the unit weight of water is 1.0 grams per milliliter, milligrams per liter are roughly equivalent to parts per million for a solution which is mostly water.

Dissolved Oxygen (D.O.) refers to the uncombined oxygen in water which is available to aquatic life. Since this oxygen is consumed more rapidly in the decomposition of wastes, the D.O. gives an instantaneous picture of the condition of a waterbody. Time of day and temperature of the water are important in interpreting D.O. Levels. Temperature affects the amount of oxygen which water can contain. Time of day is related to the effects of algae. Algae consume oxygen through respiration throughout the day and night. During daylight hours, they add oxygen through photosynthesis. D.O. levels are therefore generally highest during the afternoon and lowest just before sunrise.

<u>Biochemical Oxygen Demand</u> (B.O.D.) measures the amount of oxygen required by bacteria to decompose organic matter. The B.O.D. is gradually exerted, consisting of two stages. In the first stage, carbonaceous matter is stabilized while nitrogenous substances are broken down in the second stage. The second stage (nitrification) usually begins after seven days. The ultimate, or total, B.O.D. from both stages may require an incubation period of 30 days or more. Through recurrent use, the 5 day B.O.D. has become the standard test used in water quality analysis.

<u>Chemical Oxygen Demand</u> (C.O.D.) refers to the amount of oxygen required to chemically oxidize waste material. Since some of the organic matter in a waste cannot be decomposed by microorganisms but can be broken down by chemical oxidation, the C.O.D. is generally greater than the B.O.D.

The C.O.D. is especially useful in analyzing a waste that contains a great deal of non-biodegradable matter.

<u>Total Solids</u> measures all solids in water including suspended and dissolved, organic and inorganic. They are measured by evaporating the water from a sample of known volume and weighing the residue remaining. The residue then can be ignited in a laboratory furnace to determine the organic portion. The loss on ignition is considered organic and the remaining residue, known as fixed solids, is considered to be inorganic.

<u>Suspended Solids</u> are those which can be removed by passing the water through a filter. The remaining solids are called dissolved solids. Suspended solids provide a good measure of the efficiency of a sewage treatment plant; primary treatment should remove about 50 percent of the suspended solids while secondary treatment should remove about 90 percent.

<u>Coliform Bacteria</u> are found in abundance in the intestinal tract of warm-blooded animals. They are not harmful in themselves, but their presence indicates that pathogenic bacteria also may be present. Since they can be detected by relatively simple test procedures, coliforms are used to indicate the extent of bacterial pollution from sewage. Bacterial tests usually measure the fecal coli and the total coli. Fecal coli make up about 90 percent of the coliforms discharged in fecal matter. Nonfecal coli may originate in soil, grain, or decaying vegetation.

<u>pH</u> measures the hydrogen ion concentration on an inverse logarithmic scale ranging from 0 to 14. pH values under 7 indicate more hydrogen ions and therefore more acidic solutions; pH values over 7 indicate less hydrogen ions and therefore more alkaline solutions. A pH of 7 indicates a neutral solution. <u>Alkalinity</u> is a quantitative measure of the alkaline materials present while <u>acidity</u> is a quantitative measure of acidic materials.

<u>Nutrients</u> are compounds which act as fertilizers for aquatic organisms. Small amounts are necessary to the ecological balance of a waterbody, but excessive amounts can upset the balance by causing excessive growths of algae and other aquatic plants. Sewage discharged to a waterbody usually contains large amounts of carbon, nitrogen, and phosphorus. The concentration of carbonaceous matter is reflected in the B.O.D. test. Additional tests are run to determine the concentrations of nitrogen and phosphorus.

Phosphorus appears in waterbodies in combined forms known as orthoand poly-phosphates and organic phosphorus. The majority of the phosphorus contained in domestic sewage and industrial wastes comes from detergents. Additional phosphorus may enter a waterbody in agricultural runoff where fertilizers are used.

Nitrogen in the form of organic nitrogen decomposes into ammonia nitrogen, nitrite nitrogen and nitrate nitrogen. Since each decomposition reaction is dependent on the preceding one, the progress of decomposition can be determined in terms of the relative amounts of these four forms of nitrogen.

<u>Ammonia Nitrogen</u> is present in sewage and is also generated from the decomposition of organic nitrogen. It can also be formed when nitrites and nitrates are reduced. Ammonia is particularly important since it has high oxygen and chemical demands and is also toxic to fish.

<u>Nitrite Nitrogen</u> is the oxidation product of ammonia. It has a fairly low oxygen demand and is rapidly converted to nitrate. The presence of nitrite nitrogen usually indicates that active decomposition is taking place.

<u>Nitrate Nitrogen</u> is important since it is the end product in the aerobic decomposition of nitrogenous matter. Nitrogen in this form is readily available to plants.

<u>Turbidity</u> is the measure of the clarity of a water sample. It is expressed in Jackson Standard Units which are related to the scattering and absorption of light by the water sample.

<u>Color</u> is determined by visual comparison of a sample with known concentrations of colored solutions and is expressed in standard units of color. Certain waste discharges may turn water to colors which cannot be defined by this method; in such cases, the color is expressed qualitatively rather than numerically.

Specific Conductance yellds a measure of a water sample's capacity to convey an electric current. It is dependent on temperature and the concentration of ionized substances in the water. Distilled water exhibits specific conductance of 0.5 to 2.0 micromhos per centimeter while natural waters show values from 50 to 500 micromhos per centimeter.

The above parameters are measured in most water quality surveys. Other constituents such as metals or radioactivity are measured in areas where particular problems are known to exist. Microscopic examinations are conducted on most surveys to measure the amount of algae and other microorganisms present. Additional samples of the river bottom are usually collected in order to determine the types of deposits present. Decomposition of organic suspended matter which settles to the bottom will exert an oxygen demand on the water.

Two types of samples are collected for analysis: grab and composite. A grab sample is an instantaneous sample collected to show conditions at a particular time. Composite samples are collected over a period of time at specific intervals, giving a better picture of the overall water quality situation for the time covered.

Certain levels of the above parameters occur naturally in waterbodies. Since these levels vary among the different ponds, streams, and coastal waters, the following tables are presented for the sake of reference. Table A summarizes the numerical limits for certain parameters as specified by the Massachusetts Water Quality Standards. Table B lists levels found in unpolluted reaches of various Massachusetts waters.

SPECIFIED LEVELS OF CERTAIN PARALETERS

MASSACHUSETTS WATER QUALITY STANDARDS

	Dissolved Oxygen	pH	Coliform Bacteria	Total, Phosphate	Armonia Hitrogon
dlase A	Not less than 75% of saturation for 16 hours of any 24 hour period and never less than 5 mg/1.	As natural- ly occurs.	Not to exceed an aver- age of 50 per 100 ml. for any monthly period.	No Standard (As naturally occurs)	No Standard (As naturally occurs)
Olass D	Same as above	б .5-8.0	Not to exceed an aver- age value of 1000 for any mo th nor 2400 in more than 20% of sam- ples collected.	Not to exceed an average of 0.05 mg/l dur- ing any month.	Not to execed an average of 0.5 mg/l as N during any month.
Class C	Not less than 5 mg/l during at least 16 hours of any 24 hour period and never less than 3.0.	б .0- 8.5	None in concentrations that would impair us- ages assigned to this class.	Same as above.	Not to exceed an average of 1.0 mg/l as N during any month.
Class D	Not less then 2.0 mg/l	6.0-9.0	Same as above.	No standard.	No standard.
Class SA	Not less than 6.5 mg/l	6.8-8.5	Not to exceed a median value of 70 and not more than 10% of sam- ples over 230.	Not to exceed an average of 0.07 mg/l as P during any mont	Not to exceed an average of 0.2 mg/1 as N during any h. month.
Class SB	Not less than 5.0 mg/1	6.8-8.5	Not to exceed a median value of 700 and not more than 10% of sam- ples over 2300.	Same as above.	Same as above.
Class SC	Not less than 5 mg/l during at least 16 hours of any 24 hour period and never less than 3 mg/l.	6.5-8.5	None in concentrations that would impair any uses assigned to this class.	Same as above.	Not to exceed an average of 1.0 mg/1 during any month.

TABLE B:

SELECTED ANALYSES OF UNPOLLUTED WATERS

•	Lake Quinsigamond Worcester	Swift River below Quabbin Reservoir	Parker River Byfield	Charles River Hopkinton
Dissolved Oxygen, mg/l	11.2-12.5	7.4-9.2	7.2-8.4	6.2-7.4
5-Day B.O.D., mg/1	0.8	1.8	1.9	0.7
Suspended Solids, mg/l	1.5	5	4	0
pH	6.7	6.5	7.6	6.4
Alkalinity, mg/l	18	8	37	8
Total Coliform per 100ml.	28	1 <i>3</i> 00	300	170
Fecal Coliform per 100ml.	5	14		-
Color, Std. Units.	28	- 25	68	35
Turbidity, Std. Units	2	4	2	2
Ammonia as N., mg/l	•04	0.10	0.04	0.0
Nitrite as N, mg/l	-	0.000	0.006	0.0
Nitrate as N, mg/l	-	0.0	0.1	0.0
Total Phosphate as P, mg/1	•04	•07	0.16	0.03

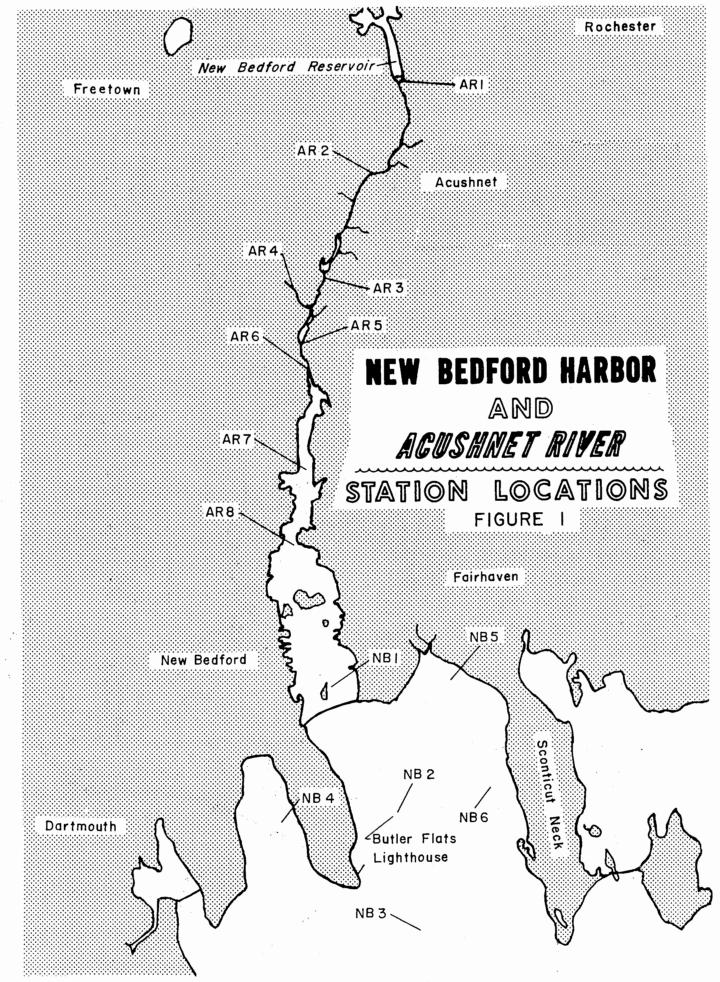
ĺ4

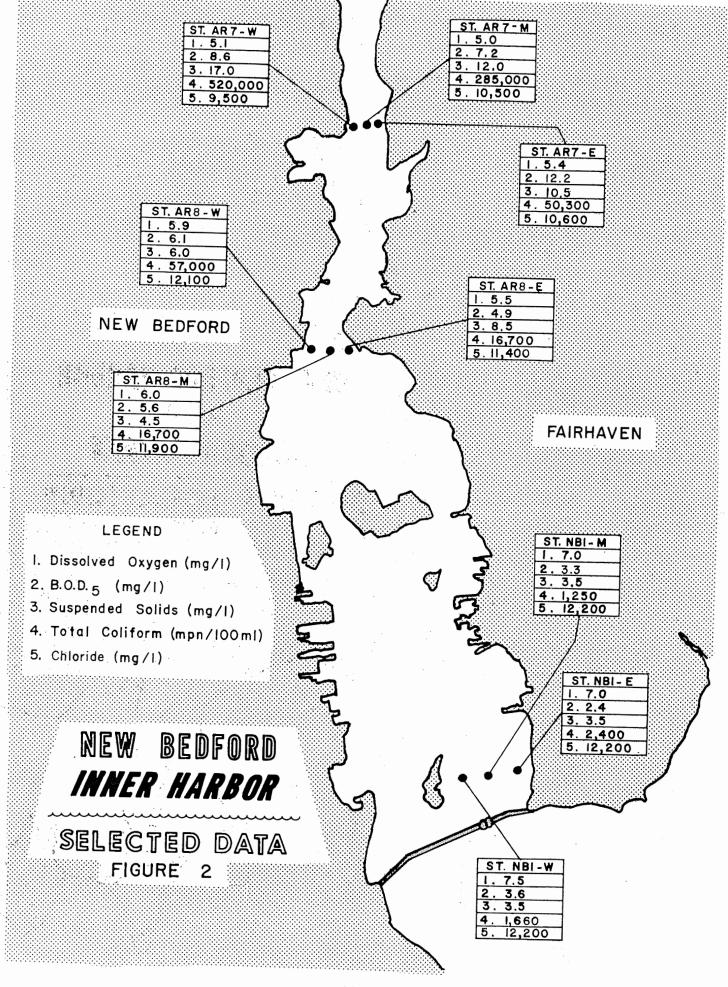
BASIN DESCRIPTION

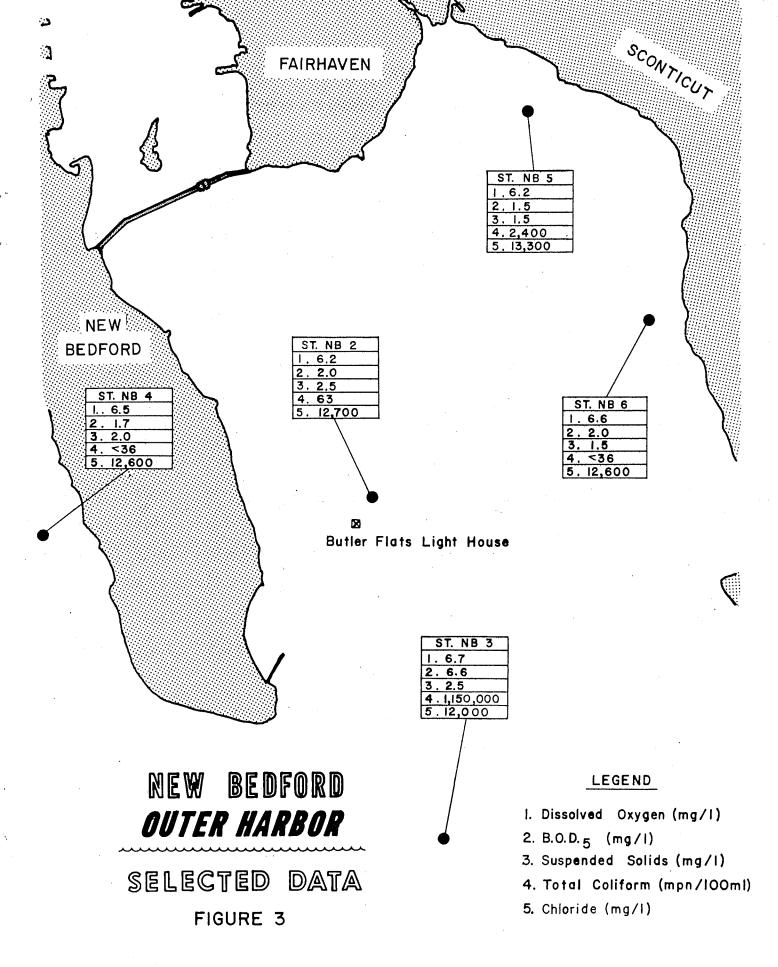
Probably no other city in Massachusetts is more involved with the ocean than New Bedford. Long the center of the whaling trade, the City's leading industry remains fishing. New Bedford Harbor is busy with fishing and lobster boats as well as pleasure craft. Fish processing plants line the shores. Many reminders of the City's seafaring heritage can be seen at the Whaling Museum and other sites along the Moby Dick Trail.

New Bedford Harbor is essentially the tidal portion of the Acushnet River. The river begins in northern Acushnet at the outfall from New Bedford Reservoir and flows generally south to the New Bedford City Line. Here, at the dam by Acushnet Sawmill, the river turns tidal and continues south to Popes Island and the Route 6 bridge. This point is considered to be the boundary between the river and the harbor. Approximately 1.3 miles below the bridge, the entrance to the harbor is marked by a stone dyke. Erected by the Corps of Engineers, this 4000 foot wide barrier provides flood protection for the City. During severe storms, the 157 foot wide navigational opening can be closed. This barrier has been a center of controversy as local residents feel that it inhibits the tidal action in the harbor, thereby preventing pollutants from being dispersed into the open sea.

Beyond the barrier, the harbor broadens out into Buzzards Bay. To the east is Sconticut Neck in Fairhaven. To the west is a penninsula which is part of New Bedford. Fort Rodman lies at the tip of this penninsula. This will be the site of the New Bedford Sewage Treatment Plant. At the present time, sewage is pumped from here to a point half a mile off shore. On the west side of the penninsula is Clark Cove. A pumping station on shore frequently discharges sewage into this cove.


A dairy farm and several industries discharge wastes to the Acushnet River in Acushnet. Several industries in New Bedford and Fairhaven discharge wastes to the river and the harbor without treatment. These include several fish processing plants as well as textile mills. New Bedford also has the combined sewer problems which are so common in the older cities in the State. These sewers carry both wastes from homes and industries and storm water. During storms, they overflow to the river and the harbor. Fairhaven, meanwhile, has recently completed an extended aeration sewage treatment plant. The effluent from this plant is discharged inside the barrier.


DEFINITION OF SAMPLING STATIONS


ACUSHNET RIVER - NEW BEDFORD HARBOR

STATION NUMBER	LOCATION	RIVER MILE
AR1	New Bedford Reservoir at dam, Achushnet	8.2
ÂR2	Achusnet River at dirt road bridge off Middle Road, Acushnet	6.8
*AR3	Acushnet River at Hamlin Road, Acushnet	5.5
AR4	Achusnet River Tributary at Middle Road, Coury Heights, Acushnet	5.0 + .4
AR5	Acushnet River at Pond Outlet above Acushnet Sawmil Acushnet	1, 4.6
AR6	Acushnet River at Main Street bridge, Acushnet-New Bedford City Line	4.5
AR7 2011	Acushnet River, opposite Coffin Avenue, Fairhaven- Acushnet-New Bedford City Line	3.1
AR8	Acushnet River, opposite radio station WBSM Tower, Fairhaven-New Bedford City Line	2.1
NB 1	New Bedford Harbor - Inside Hurricane Barrier, Fair haven-New Bedford City Line	2
NB2	New Bedford Harbor at Butler Flats Lightship, New Bedford	
NB3	New Bedford Harbor at New Bedford Sewer Outfall, New Bedford	
NB4	Clark Cove opposite sewage pumping station, New Bed	ford
NB5	Nasketucket Bay opposite Pope Beach, Fairhaven	
NB6	New Bedford Harbor off Silver Shell Beach, Fairhave	n

* East and West Channels were both sampled

TIME, TEMPERATURE, DISSOLVED OXYGEN

ACUSHNET RIVER 1971

1.1		JULY	13			JULY	15	
STATION	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6	RUN 7	RUN 8
ARI	*03:55	10:05	20 : 35	-	04:00	10:00	19:45	23:00
	** 66	72	75	-	68	72	71	69
	*** -	7.2	7.5		7.5	7.3	7.4	7.2
AR 2	04:05	10:15	20:45	-	04:10	10:10	20:00	23:05
•	64	64	71	-	-	68	68	-
	2.8	3.1	4.3		3.2	4.1	5.0	4.3
AR3-Eas	t 04:20	10:30	21:00	· _	04:15	10:25	-	-
	65	70	73	-	66	70	-	-
	2.1	5.5	5.9	· -	2.7	3.9	•	
AR3-Wes		10:30	21:00	-	04:20	10:25	20:15	23:10
	65	70	73	-	66	70	71	68
ŕ	0.7	3.6	6.5	-	0.3	4.5	6.3	5.0
AR4	04:30	10:45	21:10	-	04:25	10:30	20:30	23:20
	60	68	70	-	62	62	66	64
	2.4	2.1	1.2	-	0.4	0.5	0.0	.0.0
AR5	04:40	10:50	21:25		04:35	10 : 35	20:40	23:25
AU	66	68	72	-	66	68	-	68
	1.4	1.9	1.6	-	1.2	1.2	3.3	2.5
AR6	04:45	10:55	21:30	-	04:45	10:40	20:55	23:30
	64	70	68	-	65	67	68	68
	4.1	6.7	4.2	-	3.8	6.5	5.4	5.7
			· · ·					

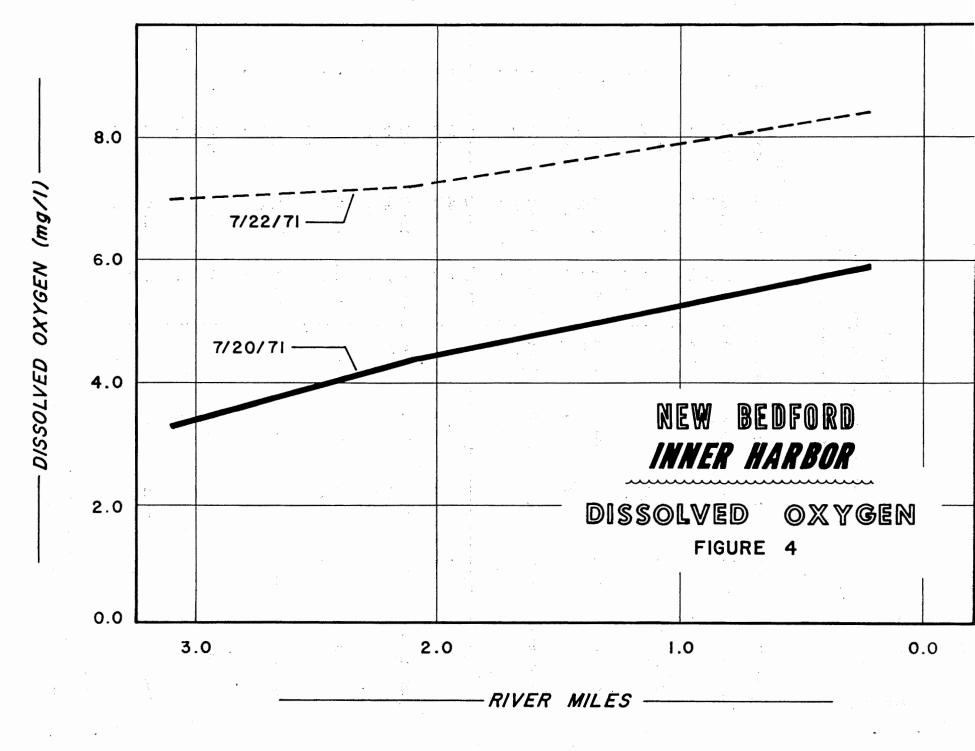
* Time
** Temperature, degrees Fahrenheit
*** Dissolved Oxygen, milligrams per liter

Ň

TIME, TEMPERATURE, DISSOLVED OXYGEN

NEW	BEDFORD	OUTER	HARBOR
	Contract		
552	weith fi		100

ger a


an a	Ages	ti de la companya de La companya de la comp	gar con Ara					
		JUL	Y 13		Ş.	JULY	15	
STATION	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6	RUN 7	RUN 8
NB2-Top	*05:35	11:30		23:05	8:00	11:30	16:40	- '
	** -	67	. S. 72	70	65	67	67	-
	*** 1.4	7.2	7.4	6.6	6.8	6.9	7.4	. . .
NB2-Bottom	05:40	11:30	16:30	23:10	8:00	11:30	16:45	-
- i -	64	67	70	71	66		66	·- ; ·
	1.4	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	5.8	7.0	P	68		-
	05:50		16:40	0:00	08:10	11:45	17:00	-
	66	66	71	70		66	68	-
	5.9	6.9	7.1	7.3		6,5	6.3	-
NB3-Bottom	05:50	11:45	16:50	0:05	08:15	11:45	17:05	-
An A	64	65	70	68		66	66	-
	7.0		5.9	7.0		6.9		- 1
NB4-Top	06:10	11:55	17:05	-	08:20	12:00	17:25	-
	66	67	71		66		68	-
1			4.0		•	6.7		•
			· · ·			Č.		
NB4-Bottom			17:05	0:30		12:00		-
	64	67	_70	7 0	66	68	66	-
•	6.1	6.6	7.8	7.3	6.1	6.1	7.2	• .
NB5-Top	06:45	12:10	17:30	ji - 1	08:35	12:15	17:55	-
	66	67	72	-	66	68	-	- .
	6.8	7.4	7.2		7.1	7.3	7.6	-
NB5-Bottom	06:45	12:10	17:40	-	08:35	12:15	18:00	-
Ē.	66	66	71	- 2 ⁻²	66		68	-
- 	3.0	7.8	8.5	-	6.9	7.3	7.6	-
NB6-Top	06:30	12:20	17:50	-	08:45	12:25	18:05	-
*	· · · ·	66	70	•••••	66	68	68	
	2.4	7.2	8.2	-	7.0	7.1	8.0	-
NB6-Bottom	06:30	12:25	17:50	•	08:45	12:25	18:10	-
4	65	67	70	etter en son en	66	69	68	· · · · · · · · · · · ·
	3.4	7.3	8.1		7.1	7.2	8.0	-
r.,		2/2		41 C	1		1.111	

*Time

 $f_{\mathcal{F}}^{*}$

** Temperature, degrees fahrenheit

*** Dissolved oxygen, milligrams per liter

TIME, TEMPERATURE, DISSOLVED OXYGEN

NEW BEDFORD INNER HARBOR

				JULY 22					
	STATION								
	AR7-East Top	+05:20	10:55	17:00	22:35	05:00	10:30	18:15	23:30
	AR7-East Top	** 2.2	3.6	4.1	3.4	7.1	6.9	7.6	8.1
	AR7-West Bottom		10:55	17:00		05:05	10:30		23:30
	2013 (* 6)		3.6	3.9	3.8	3.3	3.8	7.3	5.8
	AR7-Middle Top	05:15	10:45	17:05	22:35	04:55	10:25	18:05	0:00
		70 2.3	70 2.3	73 4.9	3.3	69 6,6	73 4.3	75 8.8	75 7.7
	AR7-Middle Bottom	05:20	10:55	17:05	22:35	04:55	10:30	18:05	0:05
	AR7-Middle Bottom	69 2.0	70 2.2	73 4.6	72	70 3.2	72	75 9.3	75 6.1
	AR7-West Top	68 1 8	70	74	72	69	72	-	74
						N			
	AR7-West Bottom	05:15 69 1.7	70	74	72	72	10:25	18:00	23:45
	AR8-East Top	05:00 69	10:35 70	16:45 74	22:20 72	04:45	10:15 70	17:55 75	23:10 72
		2.9	2.4	5.9	22:20 72 4.0	6.7	4.5	10.9	6.7
	AR8-East Bottom	05:05	10:35	16:45	22:20	04:45	10:20	17:55	23:10
	18 J. (17)	2.1	2.7	5.8	72 2.9	4.2	4.0	75 10.7	6.7
	AR8-Middle Top	04:55	10:30	16:50	22:15	04:40	10:15	17:50	23:40
		7.1	2.6	74 6.5	72 13.9	4.8	70 5.3	75 10.8	72 6,6
	AR8-Middle Bottom	05:00	10:30	10:50	22:15	04:40	10:15	17:50	23:40
		70 '3.0	70 2.3	73 3.4	72 3.1.	70 3.5	70 4.8	75 10.0	74 5.6
	AR8-West Top	04:50	10:25	16:55	22:10	04:35	10:10	17:35	23:35
		70 4.1	69 2.4	74 7.0	72 3.7	69 4.6	71	75 10,7	72
	AR8-West Bottom					1			
		70	69	74	72	70	72	75	74
	ND1-Free Tree	04:45		``		1		17:30	
	NB1-East Top	68	69	74	72	70	72	74	72
		5.2					7.7		
	NB1-East Bottom	04:45 69	10:15 69	16:15 74	22:00 72	04:15 70	10:05 72		
		5.1	5.8	5.2	5.8	5.3	7.4	7.4	7.4
	NB1 Middle Top	04:30 68	10:10 70	16:30 73	22:00 72	04:05 70	10:00 72	17:20 73	23:15 72
		5.4	5.1			6.8		9.5	
	NB1 Middle Bottom	04:35 69	10:10 69	16:30 73		04:05	10:00 70	17:20 73	23:15 72
:		5.4	5.0	7.1	72 5.7	70 6.8	6.0	8.3	
	NB1 West Top			16:30		03:55			
		68 5.7	69 5.4	72 7.8		.70 6.9	71 8.4		72 9.2
	NB1-West Bottom	04:25	10:05	16:30	21:50	04:00	09:55	17:15	23:25
		69 4.0	68 5.0	72	72	70 6.6	70	73	71
	t Timo					1		2	

* Time

£

. .

Ł.

(M)

~

t e

Temperature, degrees fahrenheit Dissolved oxygen, milligrams per liter **

TEMPERATURE, DISSOLVED OXYGEN SUMMARY

ACUSHNET RIVER, NEW BEDFORD OUTER HARBOR

STATION	WATER MAX	TEMPERATU MIN	RE, ^o f AVG		DISSOLVED MAX	OXYGEN, MIN	mg∕⊥ AVG
AR1	75	66	70		7.5	7.2	7.4
AR2	71	64	67		5.0	2.8	3.8
AR3-East	73	65	69		5.9	2.1	4.0
AR3 West	73	65	69		6.5	0.3	3.8
AR4	70	60	65		2.4	0.0	0.9
AR-5	72	66	68		3.3	1.2	1.9
AR6	70	64	67		6.7	3.8	6.0
		:				·• .	
en e		1997 - 19					
NB2 Top	72	65	68		7.4	1.4	6.2
NB2 Bottom	71	64	67		7.4	1.4	5.9
NB3 Top	71	65	67	:	7.3	5.9	6.7
NB3 Bottom	70	64	66		7.4	1.9	6.2
NB4 Top	71	66	68		7.6	4.0	6.5
NB4 Bottom	70	64	67		7.8	6.1	6.7
NB5 Top	72	66	68		7.6	6.8	6.2
NB5 Bottom	71	66	67		8.5	3.0	7.0
NB6 Top	70	66	68		8.2	2.4	6.6
NB6 Bottom	70	65	68		8.1	3.4	6.8

TEMPERATURE, DISSOLVED OXYGEN SUMMARY

TABLE 6

1

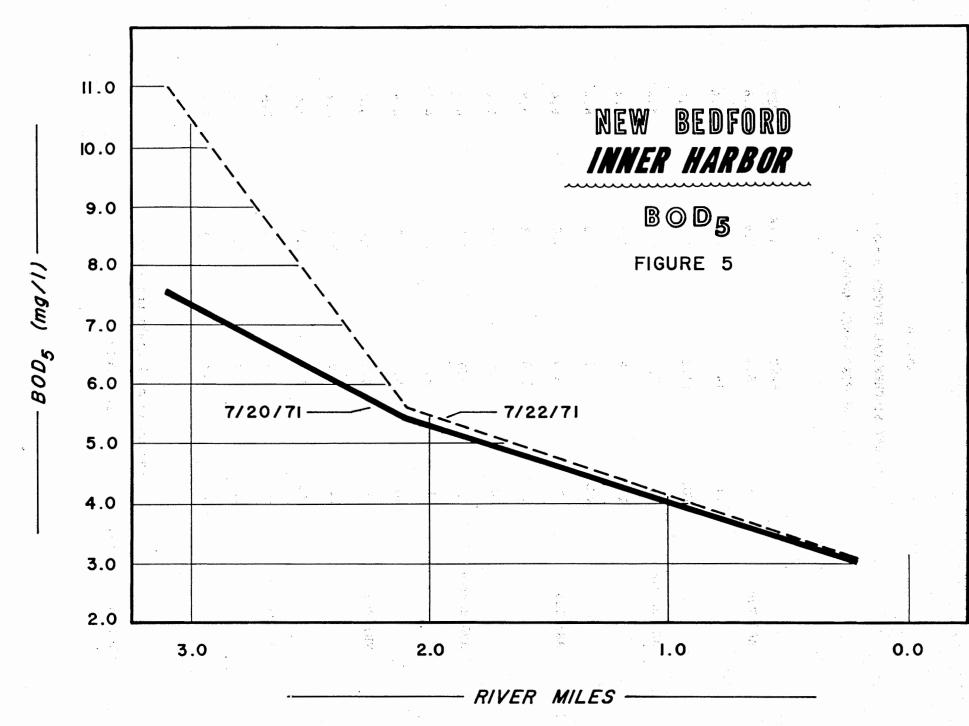
NEW BEDFORD INNER HARBOR

			EAST				MIDDLE			WEST	
STAT	TION	MAX	MIN	AVG		MAX	MIN	AVG	MAX	MIN	AVG
AR7	Тор	* 75	68	72	,	75	69	72	74	68	71
		** 8.1	2.2	5.4		8.8	2.3	5.0	9.4	2.8	5.1
	Bottom	75	69	71		75	69	72	75	69	72
		7.3	1.1	3.6		9.3	2.0	4.0	9.4	1.1	3.8
AR8	Тор	75	69	72		75	68	73	75	69	72
		10.9	2.4	5.5		10.8	2.6	6.0	10.7	2.4	5.9
	Bottom	75	69	72		75	70 2.3	72	75	69	72
		10.7	2.1	4.9	ite generation a	10.0	2.3	4.5	10.8	2.3	4.8
NB1	Тор	74	68	. 71		73	68	71	76	68	71
	-	10.5	5.1	7.0		9.5	5.1	7.0	11.0	5.4	7.5
	Bottom	74	69	71		73	69	71	73	68	71
		7.4	5.1	6.2		9.0	5.0	6.7	6.6	4.0	5.3

S.

* Temperature, degrees fahrenheit ** Dissolved Oxygen, milligrams per liter **

5 DAY BIOCHEMICAL OXYGEN DEMAND


ACUSHNET RIVER, NEW BEDFORD OUTER HARBOR

2000 - 1200 1200 - 1200 - 1200 1200 - 1200 - 1200

STATIC	N	JULY	3	JULY 15		AVERAGE
AR 1		2.0		1.4		1.7
AR2	•.	1.6		1.0		1,3
AR3		2.8		2.8		2.8
AR4		16.0		152.0		84.0
ÀR5		2. 2		3.6		2.9
AR6	1000 - 1000 1000 1000	2.8		4.6		3.7
NB2	Тор	2.4		1.6		2.0
NB2	Bottom	1.6		3.4		2.5
NB 3	Тор	6.0		7.2		6.6
NB3	Bottom	2.6	for a second s	0.6	·	1.6
NB4	Тор	1.8		1.6	2	1.7
NB4	Bottom	1.4		1.2		1.3
NB5	Тор	1.4		1.6		1.5
NB5	Bottom	1.6		2.0		1.8
NB6	Тор	2.0		2.0		2.0
	Bottom	2.0		1.8		1.9
	- 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18	10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -				

RESULTS IN MILLIGRAMS PER LITER

^{c.}	- 'r	•••	-				•.
		-		•			
医头裂 化过度分的分离子的过去式和过去分词 化乙基基乙基基乙基							
					•.		
	ç				1		
10 ja 11	2		· · ·		÷	• ::	
	÷		•	•	•		
				S. 2		•	
•				, f			۰.

:

5 DAY BIOCHEMICAL OXYGEN DEMAND

NEW BEDFORD INNER HARBOR

		59 1 1			
۲ :			EAST	MIDDLE	WEST
AR7	Тор		8.4	5,6	8.8
	,	Ĩ	16.0	8.7	8.4
		AVG.	12.2	7.2	8.6
AR7	Bottom	I	7.2	6.4	5.6
		II	7.8	7.2	7.2
• #		AVG.	7.5	6.8	6.4
AR8	Тор	I	4.0	6.0	6.4
		II	5.8	5.2	5.8
		AVG.	4.9	5,6	6.1
AR8	Bottom	I	5.6	3.2	4.8
	· · · ·	II	6.2	2.6	4.0
		AVG.	5.9	2.9	4.4
NBL	Тор	, I	3.2	3.0	3.0
	•	II	1.6	3.6	4.2
•	· .	AVG.	2.4	3.3	3.6
NB 1	Bottom	I	2.6	3.2	2.4
		II	1.0	1.0	2.5
		AVG.	1.8	2.1	2.4

Results in milligrams per liter

DATES:	I -	July	20		II	-

I - July 22

LONG TERM B.O.D. STUDY

ACUSHNET RIVER - NEW BEDFORD HARBOR

there were a set and an and the

	STATI	<u>N</u>	<u>2 DAY</u>	<u>5 DAY</u>	<u>7 DAY</u>	<u>14 DAY</u>	21 DAY
	AR1		0.6	2.0	2.4	2,8	4.2
	AR2		0.4	1.6	2.0	3.2	3.8
1.17	AR3			2.8	3.2	6.8	8.4
w 2	AR4		14.0	16.0	26.0	108.0	126.0
Esta de la composición de la c	AR5		1.2	2.2	2.8	3,8	4.8
	AR6		1.8	2.8	3.4	5.4	6.0
С. ј.	ast AR7 rid Nest						
1, 2	as' AR7	ЕT	3.6	8.8	9.6	10.0	11.0
Ra		EB	1.6	5.6	6.4	8.4	9,6
. N	N.C.	MT	2.8	5.6	6.0	7.6	9.2
M	A. A.	MB	3.2	6.4	6.6	6.8	8.8
1	Nes'	WT	5.2	8.4	9.2	10.0	13.0
W=n		WB	3.6	7.2	7.2	8.8	10,0
	U Print						
X. 1.	Home			<u></u>			
	AR8		2.4	6.4	8.0	10.0	11.0
	÷	EB	2 .4 .0	4.8	6.4	6.8	8.0
•]#	E. S.	MT	2.8	6.0	, ·	8.8	9.2
N		MB	1.6	3.2	4.0	5.2	6.4
1 C.		WT	1.2	4.0	5.6	6.0	6.0
• • •		WB	3.2	5.6	5.6	6.4 ·····	8.4
194 ([*])	$\mathcal{D}_{i_1i_2}$			$\chi = V^{2}$			
	NB1	EΤ	1.6	3.0	3.4	3.8	5.2
		EB	1.4	2.4	2.6	3.8	4.8
14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -		MT	1.6	3.0	3.0	3.4	4.4
		MB	1.0	3.2	3.2	3.8	4.0
· .		WT	2.0	3.2	3.2	3.4	4,6
а 1997 — Ц		WB	1.2	2.6	3.8	4.2	5.0
	NB2	т	0.7	1.2	1.2	1.7	1.8
		В	0.8	1.6	1.8	2.0	2.2
	NB3	т	2.4	6.0	7.0	7.8	8.4
·	·	В	0.4	1.3	1.6	2.4	2.6
	NB4	Т	0.8	1.8	2.2	2.8	3.0
		В	0.4	1.4	1.4	2.6	2.8
	NB5	т	0.6	1.4	2.0	2.4	2.8
		В	0.6	1.6	2.0	2.6	2.8
	NB6	т	Ó.8	2.0	2.4	3.0	3.0
		В	0.6	2.0	2.0	2,8	3.0

Results in milligrams per liter

1994 IST 1

ч<u>г.</u>

4.

. 5

4. . ÷

the second

15

e • • • ः ्ह

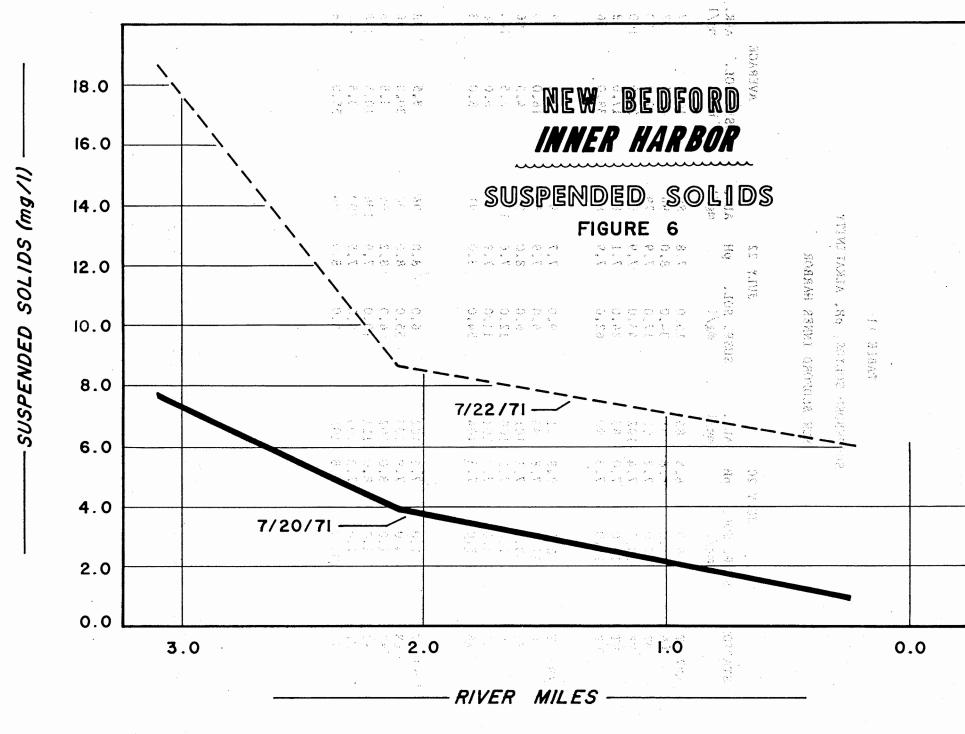
1992 E. 1993

1.100

TABLE 10

é. Atta

۰.


ъ.

SUSPENDED SOLIDS, pH, ALKALINITY

ACUSHNET RIVER - NEW BEDFORD OUTER HARBOR

			1 .						
Aler Aler	JULY	13		JULY	15			AVERAGE	
STATION	SUSP. SOL. mg/l	рH	ALK. mg/l	SUSP. SOL. mg/1	рН	ALK. mg/l		SUSP. SOL. mg/1	ALK. mg/l
AR1	2.0	6.9	12	6.0	6.9	8		4.0	10
AR2	3.0 G	6.5	15	1.0	6.5	11		2.0	13
AR3	6.0	6.6	19	19.0	6.5	12		12.5	16
AR4	26.0	7.8	255	33,0	7.2	160	5. 5.	29.5	208
AR5	2.0	6,5	21	2.0	6.5	··· 20		2.0	20
AR6	1.0	6.7	25	6.0	6.7	14		3.5	20
NB2 T	4.0	8.1	116	1.0	8,2	110		2.5	113
NB2 B	10.0	8.1	114	1.0	8.2	115	2 42 - 14	5,5	114
NB3 T	2.0	7.9	115	3.0	7.8	105	جو رو	2.5	110
NB3 B	49.0	8.0	115	1,0	8.3	1 10		25.0	112
NB4 T	1.0	8.2	110	3.0	8.1	110		2.0	110
NB4 B	2.0	8.1	115	7.0	8.2	110		4.5	112
NB5 T	2.0	8.1	100	1.0	8.2	105		1.5	102
NB5 B	8.0	8.1	110	2.0	8.1	110		5.0	110
NB6 T	1.0	8.1	90	2.0	8.2	105		1.5	98
NB6 B	16.0	8.2	90	6.0	8.2	115		11.0	102

5. č

SUSPENDED SOLIDS, pH, ALKALINITY

NEW BEDFORD INNER HARBOR

· ·	JULY	20	÷	JUL	Y 22	•	AVERAGE	E a
STATION	SUSP. SOL. mg/1	рН	ALK. mg/l	SUSP. SOL. mg/1	рН	ALK. mg/l	SUSP. SOL. mg/1	ALK. mg/l
AR7 ET EB MT MB WT WB AR8 ET EB MT MB WT	6.0 47.0 7.0 10.0 10.0 16.0 8.0 27.0 3.0 1.0 1.0	6.5 6.8 7.2 7.4 7.0 7.3 7.8 7.8 7.8 7.1 7.5 7.7	85 91 107 102 95 90 101 101 100 101	15.0 34.0 17.0 43.0 24.0 62.0 9.0 5.0 6.0 12.0 11.0	7.8 8.0 7.9 7.9 7.1 7.9 7.7 7.9 8.0 7.6 7.9	89 94 79 97 81 82 95 90 91 106 95	10.5 40.5 12.0 26.0 17.0 39.0 8.5 16.0 4.5 6.5 6.0	87 92 93 100 88 86 98 93 96 103 98
WB NB1 ET EB MT MB WT WB	8.0 1.0 4.0 1.0 2.0 1.0 102.0		104 102 103 102 111 105 105	54.0 6.0 55.0 (6.0 19.0 6.0 6.0	8.0 8.0 8.2 7.9 7.5 8.0	91 94 90 95 106 109 94	8.0 3.5 30.0 3.5 10.5 3.5 55.0	98 96 98 108 107 98

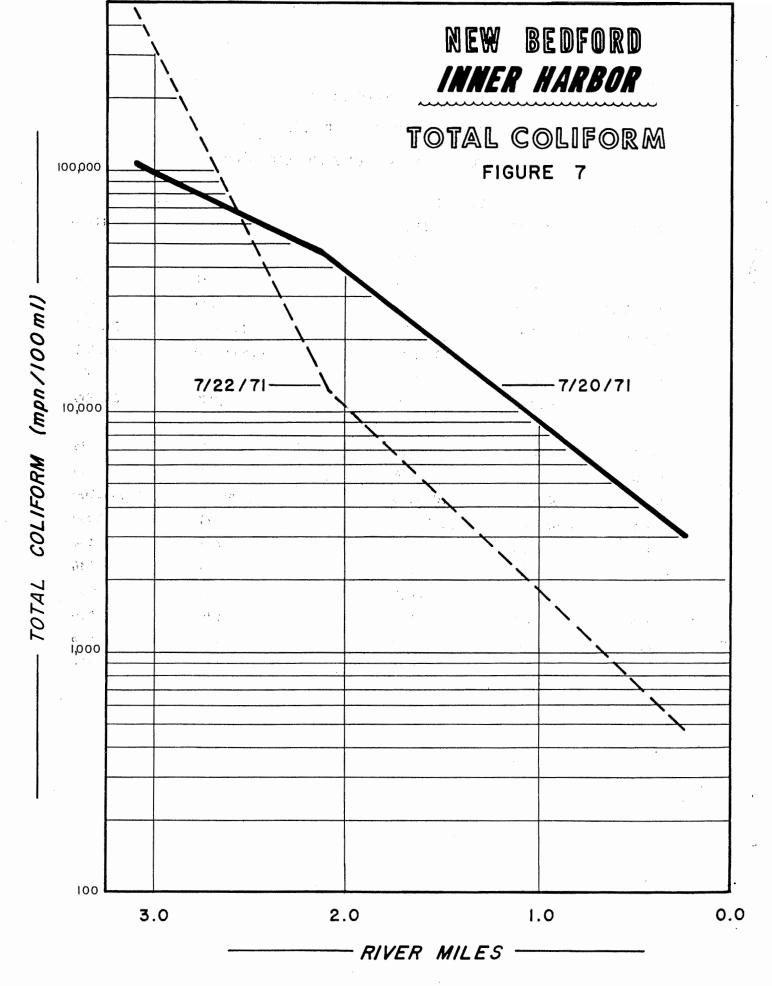

HENTONE WENT

TABLE 12

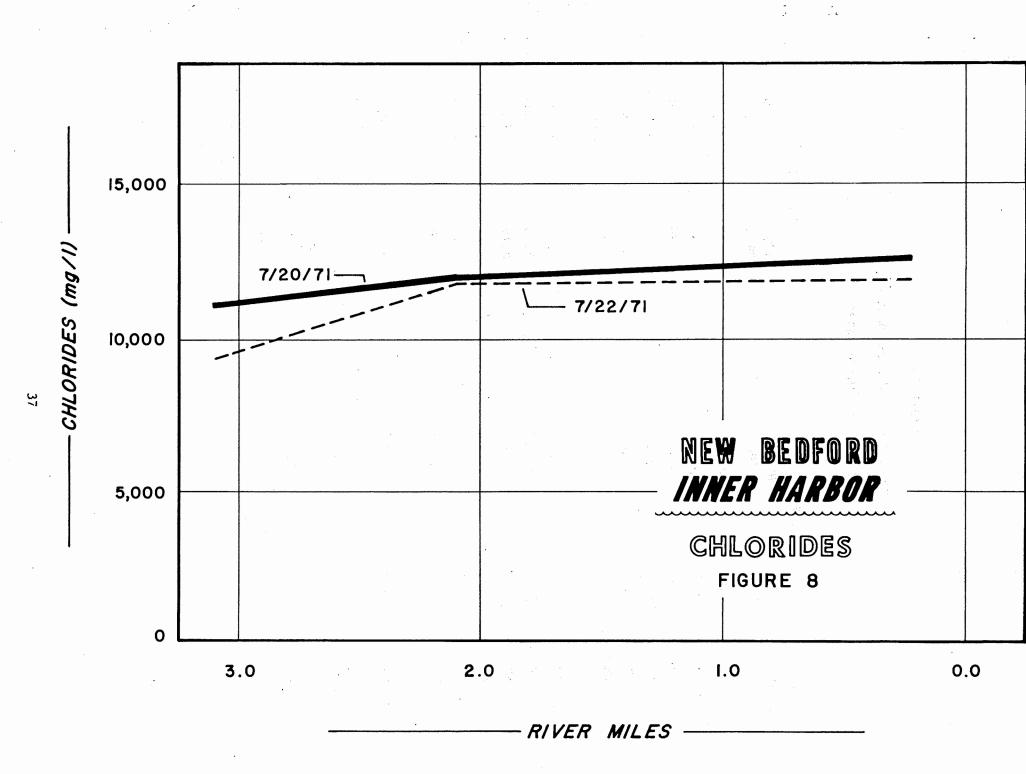
COLIFORM BACTERIA, MPN PER 100 ML

ACUSHNET RIVER, NEW BEDFORD OUTER HARBOR

		JULY 13		and a second sec	JULY 15
STATION	TOTAL	FECAL		TOTAL	FECAL
AR1	∢ 36	< 36	AND	150	91
AR2	210	210		91	36
AR3 EAST	4600	430		9300	2400
AR3 WEST	240,000	9300		240,000	24,000
AR4	2,400,000	1,100,000		4,600,000	430,000
AR5	≪ 36	× 36		430	36
AR6	240,000	9300		75,000	24,000
		· · · · · · · · · · · · · · · · · · ·	1		
NB2T	< 36 -	< 36		91	36
NB2B	∢ 36	< 36	· •	73	36
NB 3T	1,100,000	1,100,000		1,200,000	1,200,000
NB3B	1,100,000	1,100,000		2300	2300
NB4T	< 36	< 36		≮ 36	∢ 36
NB4B	< 36	∢ 36		< 36	< 36
NB5T	4600	4600		230	< 36
NB5B	15,000	4300		∢ 36	< 36
NB6T	36	< 36		< 36	< 36
NB6B	∢ 36	< 36		∢ 36	< 36
ć.					

COLIFORM BACTERIA, MPN PER 100 ML

NEW BEDFORD INNER HARBOR


, *i*

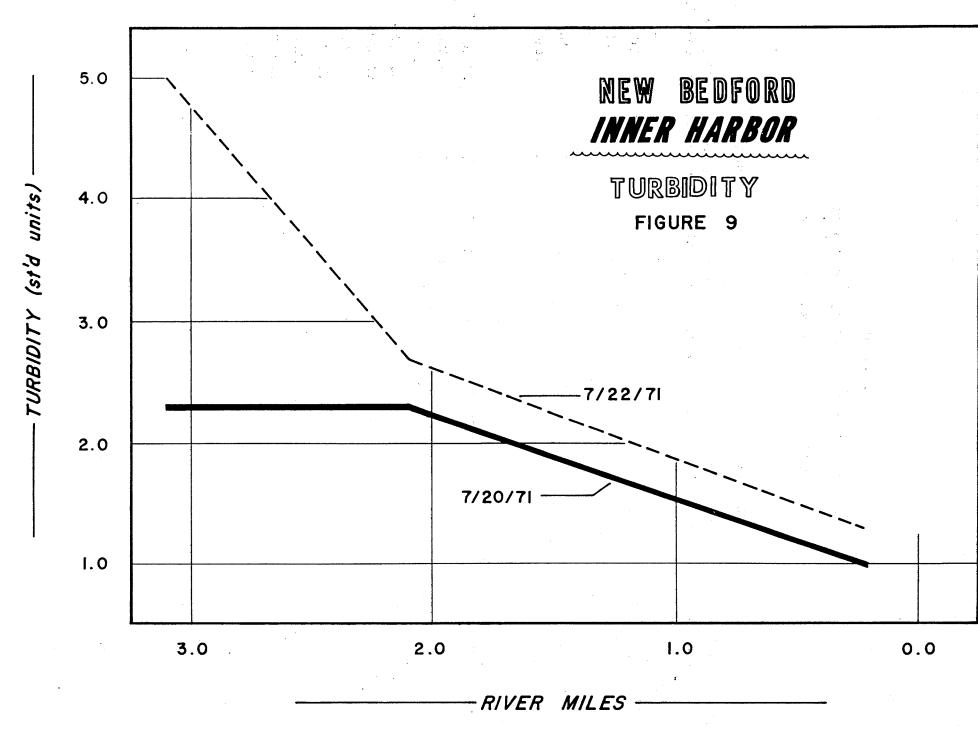
		JULY	20	JUL	¥ 22
STATI	DN	TOTAL	FECAL	TOTAL	FECAL
AR7	ET	93,000	4300	7500	4300
	EB	24,000	4300	4300	2300
	MT	110,000	15,000	460,000	240,000
	MB	9300	2300	9300	2300
	WT	110,000	46,000	930,000	430,000
• *	WB	46,000	9300	4300	4300
AR8	ET	24,000	4300	9300	4300
	EB	4300	1500	430	∢ 36
	MT	9300	2300	24,000	9300
	MB	24,000	2300	230	36
	WT	110,000	4300	4300	2300
	WB	7500	4300	2300	930
					·
NB1	ET	4300	1500	430	< 36
	EB	430	230	91	<36
	MT	2400	230	91	<36
	MB	230	91	4300	430
	WT	2400	930	930	930
	WB	930	230	430	<36

TOTAL PHOSPHATE, CHLORIDES, CHLOROPHYLL A ACUSHNET RIVER, NEW BEDFORD OUTER HARBOR

STATION	PO4 mg/I	CHLORIDES mg/l	PO4 mg/1	CHLORIDES mg/1	CHLOROPHYLL A mg/1
AR1	0.05	20	0.05	7	0.010
AR2	0.07	17	0.06	17	0.005
AR 3	0.22	34	• 0.15	19	0.013
AR4	17.00	61	30.90	31	0.013
AR5	0.40	20	0.83	21	0.013
AR6	0.20	150	0.25	800	0.005
•		· ·			•
NB2 T	0.10	13,000	0.06	12,400	0.007
NB2 B	0.11	12,800	0.06	12,400	0.013
NB3.T	0.27	12,000	0.26	12,000	0.001
NB3 B	0.21	13,000	0.06	12,600	0.002
NB4 T	0.08	12,600	. 0.08	12,600	0.002
NB4 B	0.09	12,800	0.08	12,600	0.002
NB5 ^{°°} T	0.09	14,000	0.09	12,600	0.005
NB5 B	0.09	13,400	0.09	12,400	0.004
NB6' T	0.09	12,800	0.09	12,400	0.005
NB6 B	0.09	13,400	0.08	12,600	0.005

<u>}</u>.

TOTAL PHOSPHATE, CHLORIDES


NEW BEDFORD INNER HARBOR

			JULY 20	JULY 2	2
STATI	ON	PO4 mg/1	CHLORIDES mg/1	PO4 mg/1	CHLORIDES mg/1
AR7	ET	0.27	11,000	0.23	10,200
4	EB	0.25	11,800	0.14	11,800
	MT	0.25	11,200	0.20	9800
• ; •	MB	0.24	11,200	0.10	10,600
	WT	0.29	11,000	0.53	8000
	WB	0.29	11,400	0.29	11,400
ARS	ET	0.23	11,200	0.24	11,600
ANO	EB	0.23	11,600	0.25	12,400
•	MT	0.15	11,800	0.22	12,000
	MB	0.22	12,200	0.21	12,000
	WT	0.22	12,600	0.17	11,600
	WB	0.22	12,400	0.16	12,200
NB	ET	0.15	12,400	0.13	12,000
	EB	0.12	12,200	0.12	12,400
	MT	0.11	12,400	0.14	12,000
	MB	0.13	12,400	0.13	12,000
	WT	0.13	12,600	0.15	11,800
	WB	0.07	12,800	0.12	12,000

COLOR, TURBIDITY, SPECIFIC CONDUCTANCE

ACUSHNET RIVER, NEW BEDFORD OUTER HARBOR

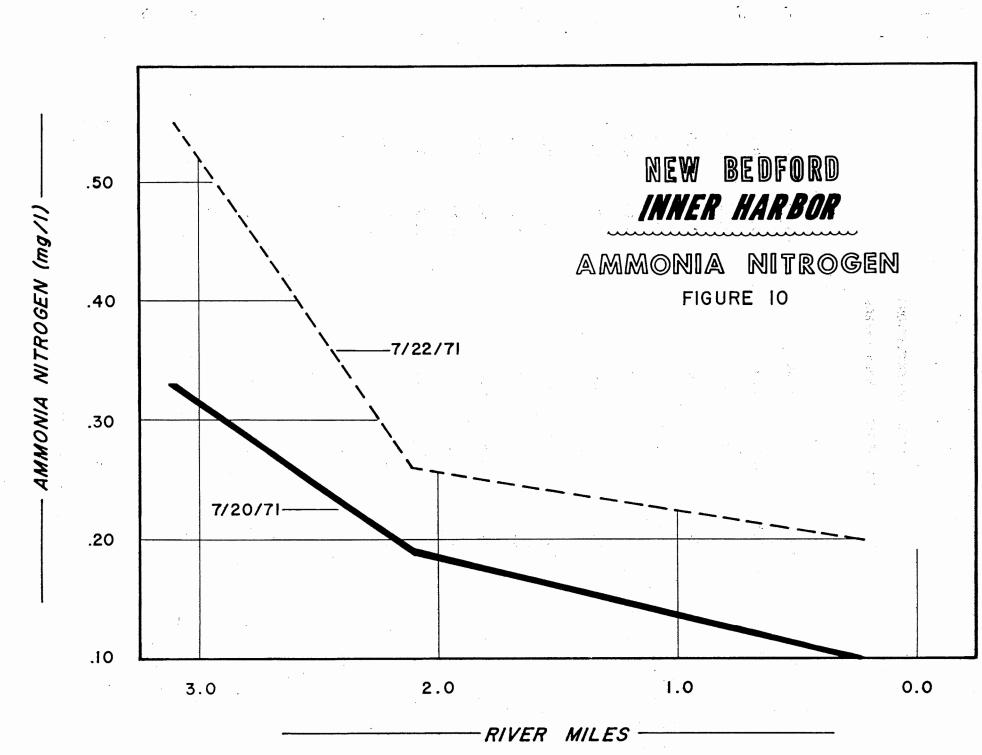
		• • •	JULY 13		ji v	JULY 15	
STATION		OLOR . Units	TURBIDITY Std. Units	SPEC. COND. Micromhos/cm	COLOR Std. Units	TURBIDITY Std. Units	SPEC. COND. Micromhos/cm
AR1		120	1.	90	120	1	170
AR2		110	2	100	100	1	110
AR3	2	100	2	110	90	1	100
AR4	•	110	7	660	-	- 2 ⁴ . ■	140
AR5		110	1	120	110	1	110
AR6		100	1	720	100	1	1450
14	÷	1					
- <u>1</u>	÷						
NB2 T	÷	13	1	44,000	5	1	47,000
NB2 B		.15	3	43,000	10	1	48,000
NB3 T	i Pr	15	2	43,000	20	1	45,000
NB3 B		15	6	40,000	5	1	44,000
NB4 T	÷	10	0	45,000	10	1	47,000
NB4 B	n de la compañía de l Este de la compañía de	. 5	0	40,000	15	1	47,000
NB5 T		15	1	42,000	15	1	46,000
NB5 B		10	1	2800	10	1	47,000
NB6 T	1	10	1	43,000	15	1	44,000
NB6 B		15	2	46,000	15	1	46,000

COLOR, TURBIDITY, SPECIFIC CONDUCTANCE

States a fram NEW; BEDFORD INNER HARBOR

37 - 1

				JULY 2	0				JULY	15	
STAT	TION	COLOR Std. Un		TURBIDIT Std. Uni	ts Mic	C. COND. romhos/cm		OLOR 1. Units	TURBID Std. U		SPEC. COND. Micromhos/cm
AR7	ĒΤ	45		2		,000		50	2		37,000
	EB	50		2	40	,000		50	4	4	41,000
	MT	40	1914 - 1914	2	44	,000	<i>8</i> .	50	3		33,000
	MB	35		3	46	,000		50	4		41,000
	WT	30		3	37	,000		45	10		29,000
	WB	35		3	40	,000		50	6		41,000
					·	16.5					
AR8	ET	70		3	40	,000		30	3		41,000
	EB	35		5	46	,000		25	2		43,000
	MT	40		2	46	,000		35	2		37,000
	MB	25	14 JA	2	43	,000		30	3	an an Alberta A	37,000
	WT	35		2	40	,000		40	3		40,000
	WB	35 Cont		2	46	,000		40	3	1. C.1	37,000
NB1	ET	(h. 14 15		. 1	42	,000		20	1		40,000
	EB	15	10 ¢	2	45	,000		30	7	$\mathbf{z} \in [1]^{d}$	42,000
	MT	12		1	46	,000		15	2		42,000
	MB	15		1	48	,000		20	3		41,000
	WT	12		i	43	,000		20	1		39,000
	WB	20		11	47	,000		20	1		41,000


NITROGEN CONCENTRATIONS

ACUSHNET RIVER, NEW BEDFORD OUTER HARBOR

	•

	1.211. 资料的		JULY 13	ng an teang an an taon an taona an taon an taon	JULY	15
ali e tre prese i da STA	ATION	Kj - N	NH3-N	NO3-N	NH3-N	NO3-N
	ARI	1.2	0.01	0.0	0.00	0.2
	AR2	0.7	0.07	0.2	0.05	0.0
÷	AR3	1.4	0.20	0.0	0.10	0.0
	AR4	25.7	22.00	0.0	12.00	0.0
	AR5	1.3	0.10	0.0	0,24	0.1
	AR6	1.2	0.10	0.1	0.07	0.1
		÷.				
	NB2 T	0.1	0.20	0.0	0.30	0.0
4	NB2 B	0.4	0.30	0.0	0.25	0.0
	NB3 T	0.1	0.38	0.0	0.50	0.0
	NB3 B	0.1	0.30	0.0	0.20	0.0
	NB4' T	0.1	0.14	0.0	0,20	0.0
	NB4 B	0.1	0.20	0.0	0.15	0.0
	NB5 T	0.1	0.10	0.0	0,20	0.0
	NB5 B	0.1	0.12	0.0	0.18	0.0
	NB6 T	0.1	0.07	0.0	0.10	0.0
	NB6. B	0.1	0.10	0.0	0.10	0.0

Results in milligrams per liter

٠,

NITROGEN CONCENTRATIONS

NEW BEDFORD INNER HARBOR

		•	JULY 20		JULY	22
STATI	ÓN	Kj-N	NH3-N	N0 ₃ -N	NH3-N	N0 ₃ -N
AR7	EŢ	2.5	0.30	0.0	0.35	0.0
	EB	1.9	0.40	0.0	0.30	0.0
	MT	1.8	0.30	0.0	0.50	0.0
	MB	0.9	0.30	0.0	0.30	0.0
	WT 5	3.1	0.40	0.0	0.80	0.0
•	WB	0.7	0.30	0.0	0.30	0.0
AR8	ET	1.3	0.20	0.0	0.29	0.0
	EB	1.9	0.15	0.0	0.24	0.0
- -	MT	1.1	0.18	0.0	0,30	0.0
	MB	1.4	0.20	0.0	0.22	0.0
:- :	WT	1.8	0.20	0.0	0.20	0.0
:	WB	0.3	0.20	0.0	0.20	0.0
NB1	ET	0.4	0.10	-	0.18	0.0
	EB	0.3	.0.10	-	0.17	0.0
	MT	0.5	0.10	-	0.17	0.0
•	MB	0.7	0.10	-	0.23	0.0
	WT	0.5	0.10		0.25	0.0
••	WB	0.8	0.10	н у. Пар	0.30	0.0

Results in milligrams per liter

i,

and the second secon

MICROSCOPICAL EXAMINATION

ACUSHNET RIVER, NEW BEDFORD OUTER HARBOR

.

. .:

			ALGAE		CRUSTACEA	ROTIFER	AMORPHOUS
STATION	BLUE-GREEN	GREEN	FLAGELLATES	DIATOMS			MATTER
AR1	0	175	100	40	0	0	400
AR2	0	20	20	150	0	0	1000
AR3 E	50	40	0	175	2	0	800
AR3 W	30	115	0	50	0	0	900
AR4	0	0	0	0	0	200	1500
AR5	30	70	0	800	0	0	500
AR6	30	20	0	400	0	0	500
NB2 T	0	0	0	0	2	0	400
NB2 B	0	0	0	0	0	0	300
NB3 T	0	0	0	0	0	0	500
NB3 B	0	0	0	25	0	0	500
NB4 T	0	0	0	0	2	0	400
NB4 B	0	0	0	0	0	0	500
NB5 T	0	0	0	50	0	0	400
NB5 B	0	0	0	0	0	0	400
NB6 T	0	0	0	0	1	0	300
NB6 B	0	0	0	0	3	0	400

Samples collected July 13-15, 1971 Results in Aerial Standard Units per Cubic Centimeter

MICROSCOPICAL EXAMINATION NEW BEDFORD INNER HARBOR

ан. 	STA	TI	ON	BLUE GREEN	ALGAE GREEN	DIATOMS	CRUSTACEA	NEMATODES	AMORPHOUS MATTER
	AR	7	Е Т	0	0	0	0	0	4100
			EB	0	0	0	0	0	4500
: -			MT	0	0	0	0	0	6000
			MB	0	0	0	0	0	5000
			WT	0	0	0	6	0	7000
	•		WB	40	75	0	5	0	1800
•.									
	AR	8	ET	0.	0.	0	0	0	2000
			EB	0	0	10	1	0	3500
			MT	10	0	0	1	0	2200
			MB	0	0	0	1	1	1250
			WT	0	0	0	1	0	2000
			WB	0	0	4	2	0	1400
· .									
	NB	1	ET	0	0	10	. 0	0	1500
			EB	0	0	0	0	0	500
			MT	0	0	0	0	0	500
			MB	0	0	0	0	0	700
			WT	0	0	0	. 0	0	600
			WB	0	0	0	0	0	500

Samples collected July 20-22, 1971

Results in Aerial Standard Units per Cubic Centimeter

. ;·

BIOLOGICAL EXAMINATION OF SEDIMENT

ACUSHNET RIVER, NEW BEDFORD HARBOR

Station	Sampled	Physical Character	Macroorganisms #30 Sieve	% Organic Debris (volume)	% Inorganic Debris (volume)
ARl	7/14	Gravel	None Living	19.0	56.0
AR2	7/14	Muck	1 Arthropod	8.0	2.0
AR3	7/14	Muck	5 Arthropods	19.0	9.0
AR4	7/14	Sand	None Living	1.0	30.0
AR5	7/14	Muck	None Living	36.0	22.0
AR6	7/14	Muck	None Living	42.0	6.0
AR7E	7/21	Muck	5 Littorina	18.0	2.0
AR7M	7/21	Muck	l Annelid	18.0	2.0
AR7W	7/21	Muck	3 Littorina 3 Annelids	9.0	1.0
AR8E	7/21	Muck	2 Annelids 2 Littorina	4.0	1.0
AR8M	7/21	Muck and Stones	l Littorina	16.0	2.0
AR8W	7/21	Muck	3 Annelids	2.0	8.0
NBLE	7/21	Muck	l Annelid l Littorina	15.0 •	2.0
NBIM	7/21	Muck	None Living	13.0	1.0
NB1W	7/21	Muck	None Living	<1.0	0.0
NB2	7/21	Gravel and Shell	l Anomiidae 2 Limpets 1 Littorina	<1.0	63.0
NB3	7/21	Muck	None Living	20.0	1.0
NB4	7/21	Muck and Shell	l Limpet l Littorina l Annelid	<1.0	23.0
NB5	7/21	Sand	None Living	0.0	28.0
NB6	7/21	Muck	l Annelid	<1.0	15.0

SPECIAL ANALYSIS OF SEDIMENT

NEW BEDFORD HARBOR

Heavy Metal Concentrations in Milligrams Per Killigram

Passing Number 30 Sieve

STATION	MERCURY	CADMIUM	LEAD	ZINC	NICKEL	COPPER	CHROMIUM	ARSENIC
AR7E	1.90	76.0	320.0	1700.0	100.0	1920.0	960.0	5.2
AR7M	3.10	53.0	310.0	1040.0	72.0	1620.0	920.0	5.2
AR7W	3.30	0.9	560.0	2300.0	180.0	2540.0	1380.0	5.2
AR8E	1.70	40.0	320.0	1070.0	110.0	2520.0	1280.0	3.2
AR8M	3.80	40.0	290.0	600.0	81.0	1680.0	1210.0	9.2
AR8W	2.70	24.0	310.0	1200.0	550.0	7250.0	3200.0	14.0
NB1E	0.90	1.9	410.0	95.0	6.8	1930.0	110.0	0.8
NBIM	1.70	0.7	11.0	35.0	3.6	36.0	21.0	0.0
NBlW	1.70	18.0	150.0	430.0	39.0	610.0	310.0	5.2
NB2	0.75	0.4	31.0	410.0	37.0	32.0	18.0	0.6
NB3	7.70	43.0	510.0	1170.0	36.0	760.0	250.0	8.2
NB4	1.80	0.8	38.0	59.0	6.9	40.0	27.0	1.6
NB5	0.85	0.1	3.4	5.5	1.5	5.0	5.1	0.0
NB6	0.21	0.9	20.0	50.0	4.5	59.0	27.0	0.6

.

; ·

٠.

•

٢

PHOTOSYTHESIS SUMMARY

ACUSHNET RIVER - NEW BEDFORD HARBOR

LOCATION	DEPTH	NUMBER OF OBSERVATIONS	AVERAGE PHOTOSYNTHESIS	AVERAGE RESPIRATION
Outer Harbor off Butler Flats Lights	1.0	8	1.0	0.4
		· 8	0.3	0.5
	18.0	8	0.2	0.4
Inner Harbor opposite power plant	1.0	14	1.1	0.2
				1.3
	30.0	10	0.4	1.0
Acushnet River above Popes Island	1.0	14	2.3	1.1
				1.5
	17.0	14	0.3	1.6
Acushnet River above Coggeshall St. Bridge	1.0	6	4.9	2.8
				2.6
	9.0	6	1.4	2.8
Acushnet River below Wood St. Bridge	1.0	6	2.5	2.1
	2.0	6	0.6	2.1
Acushnet River at Hamlin Pond	1.0	8	2.1	3.2
	4.0	8	0.4	2.8
New Bedford Reservoir Below Lake Street	1.0	8	0.3	0.1
	7.0	8	0.6	0.8
	LOCATION Outer Harbor off Butler Flats Lights Inner Harbor opposite power plant Acushnet River above Popes Island Acushnet River above Coggeshall St. Bridge Acushnet River below Wood St. Bridge Mew Bedford Reservoir Below Lake Street	Outer Harbor off Butler Flats Lights1.0 8.0 18.0Inner Harbor opposite power plant1.0 5.0 30.0Acushnet River above Popes Island1.0 4.0 17.0Acushnet River above Coggeshall St. Bridge1.0 3.0 9.0Acushnet River below Wood St. Bridge1.0 2.0 4.0Acushnet River at Hamlin Pond1.0 4.0New Bedford Reservoir Below Lake Street1.0	LOCATIONDEPTHOBSERVATIONSOuter Harbor off Butler Flats Lights1.088.08818.08Inner Harbor opposite power plant1.0145.01430.010Acushnet River above Popes Island1.0144.01317.014Acushnet River above Coggeshall St. Bridge1.063.069.06Acushnet River below Wood St. Bridge1.06Acushnet River at Hamlin Pond1.08New Bedford Reservoir Below Lake Street1.08	LOCATIONDEPTHOBSERVATIONSPHOTOSYNTHESISOuter Harbor off Butler Flats Lights1.081.08.08.080.318.080.2Inner Harbor opposite power plant1.0141.15.0140.530.0100.4Acushnet River above Popes Island1.0142.317.0140.3Acushnet River above Coggeshall St. Bridge1.064.93.061.69.061.4Acushnet River below Wood St. Bridge1.062.52.060.60.60.6Acushnet River at Hamlin Fond1.082.1New Bedford Reservoir Below Lake Street1.080.3

¥

PHOTOSYNTHESIS DATA JULY 12 - 13

NEW BEDFORD HARBOR

STATION	DEPTH (FEET)	TEMPERATURE (°F)	INITIAL D.O. (mg/1)	LIGHT D.O. (mg/1)	DARK D.O. (mg/l)	LIGHT - DARK (PHOTOSYNTHESIS)	INITIAL - DARK (RESPIRATICN)
1	1.0	70	5.2	5.7	4.7	1.0	0.5
		,		 3.5	- <u>4</u> .6 4.3	1.1	0.6
	8.0	70	5.0	3 . 5 _{mp}		-0.8	0.7
				_3.6 4.3 4.3	4.0	-0.4	1.0
	18.0	70	5.1	4.3 2	4.2	0.1	0.9
				4.3	4.7	-0.4	0.4
2	1.0	72	3.7	3.3	3.6	-0.3	0.1
	4. 			2.7		-0.9	
	5.0	72	5.5	4.2	2.9	-1.3	2.6
				3.0		0.1	
	30.0	72	3.5				
							
3	1.0	75	3.5	5.0	2.2	2.8	1.3
-				4.3		2.1	
	4.0	75	3.1	2.4	1.9	0.5	1.2
	· • -			2.3		0.4	
	17.0	75	3.2	2.6	2.2	0.4	1.0
	A ' ¥ -	, 5		1.9		-0.3	

.'

. '

ł

÷.,

•

^,

1

51

PHOTOSYNTHESIS DATA JULY 12 - 13

ACUSHNET RIVER

STATION	DEPTH (FEET)	TEMPERATURE (°F)	INITIAL D.O. (mg/l)	LIGHT D.O. (mg/1)	DARK D.O. (mg/1)	(PHOTOSYNTHESIS)	INITIAL - DARK (RESPIRATION)
4	1.0 4.0	75 75	8.1 4.6	5.7 7.0 3.5 1.7	4.9 4.5 2.2 2.3	0.8 2.5 1.3 -0.6	3.2 3.6 2.4 2.3
5	1.0 7.0	79 79	6.9 4.3	6.9 7.3 4.8 4.5	6.6 7.2 4.6 4.5	0.3 0.1 0.2 0.0	0.3 -0.3 -0.3 -0.2
	· ·						
	, * s						
				8			
		•					₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩

NEW BEDFORD HARBOR

STATION	DEPTH (FEET)	TEMPERATURE (°F)	INITIAL D.O. (mg/1)	LIGHT D.O. (mg/l)	DARK D.O. (mg/1)	LIGHT - DARK (PHOTOSYNTHESIS)	INITIAL - DARK (RESPIRATION)
1	1.0	70	6.0	6.3	5.9	0.4	0.1
					5.7	0.6	0.3
	8.0	70	5.4	5.7	5.1	0.6	0.3
				5.7	5.0	0.7	0.4
	18.0	70	5.2	5.6	5.6	0.0	-0.4
				5.4	5.1	0.3	0.1
2	1.0	74	4.1	4.5	3.0	1.5	1.1
-				4.3	3.2	1.1	0.9
	5.0	74	4.3	3.5	5.4	-1.9	-1.1
				3.5	1.3	2.2	3.0
	30.0	74	4.3	3.7	2.6	1.1	1.7
	- •			3.9	2.6	1.3	1.7
3	1.0	75	3.0	3.9	2.7	1.2	1.8
5	1.0				2.9	1.0	2.0
	4.0	75	3.6	3.3	0.0	3.3	3.6
			•••	4.7	2.3	2.4	1.3
	17.0	74	3.1	2.6	1.0	1.5	2.1
			-		0.0	1.6	3.1

•

î.

•.,

. . .

OVER

PHOTOSYNTHESIS DATA JULY 13 - 14

ACUSHNET RIVER

STATION	DEPTH (FEET)	TEMPERATURE (°F)	INITIAL D.O. (mg/l)	LIGHT D.O. (mg/1)	DARK D.O. (mg/1)	LIGHT - DARK (PHOTOSYNTHESIS)	INITIAL - DARK (RESPIRATION)
	4	1.			· · ·	÷	
4	1.0	74	4.6	2.2	0.3	1.9	4.3
			· ·	1.5	0.0	1.5	4.6
	4.0	73	4.4	2.1	1.2	0.9	3.2
	· ·			1.4	1.3	0.1	3.1
5	1.0	80	7.2	7.5	7.4	0.1	-0.2
				8.0	7.1	0.9	0.1
	7.0	78	7.2	7.7	7.0	-0.7	0.2
	54 1		÷.	6.9	7.0	-0.1	0.2

4

.

PHOTOSYNTHESIS DATA JULY 14 - 15

NEW BEDFORD HARBOR

STATION	DEPTH (FEET)	TEMPERATURE (°F)	INITIAL D.O. (mg/1)	LIGHT D.O. (mg/1)	DARK D.O. (mg/1)	LIGHT - DARK (PHOTOSYNTHESIS)	INITIAL - DARK (RESPIRATION)
1	1.0	71		7.1	6.1	1.0	
				7.0		0.9	
	8.0	71	6.7	6.7	6.5	0.2	0.2
				6.6	6.1	0.5	0.6
	18.0	71	6.6	6.2	6.0	0.2	0.6
				6.4	6.3	0.1	0.3
2	1.0	72	4.8	4.2	4.2	0.0	0.6
				4.1	3.9	0.2	0.9
	5.0	72	4.8	4.2	3.8	0.4	1.0
					4.0	0.2	0.8
	30.0	72	5.3	5.3	3.6	1.7	1.7
	-			5.3	3.8	1.5	1.5
3	1.0	73	3.1	5.1	2.5	2.6	0.6
				5.8	2.3	3.5	0.8
	4.0	73	4.4	2.9	2.2	0.7	3.7
	17.0	73	4.3	3.0	2.4	0.6	3.7
	.,	, .	.	3.2	3.2	0.0	4.3

2

3

PHOTOSYNTHESIS DATA JULY 14 - 15

ACUSHNET RIVER

3.2
3.0
2.9
2.8
0.7
0.7
2.3
5.1

PHOTOSYNTHESIS DATA JULY 15 - 16

NEW BEDFORD HARBOR

STATION	DEPTH (FEET)	TEMPERATURE (°F)	INITIAL D.O. (mg/1)	LIGHT D.O. (mg/1)	DARK D.O. (mg/1)	LIGHT - DARK (PHOTOSYNTHESIS)	INITIAL - DARK (RESPIRATION)
1	1.0	71	6.5	7.4	6.0	1.4	0.5
				7.3		1.3	
	8.0	71.	6.7	7.5	6.0	1.5	0.7
		_		6.8	6.5	0.3	0.2
	18.0	71	6.6	7.0	6.0	1.0	0.6
				6.5	5.9	0.6	0.7
2	1.0	72	4.7	4.7	3.9	0.8	0.8
				5.0	4.3	0.7.	0.4
	5.0	72	4.6	4.4	3.6	0.8	1.0
				4.4	3.9	0.5	0.7
	30.0	72	4.9	4.0	3.8	0.2	1.1
			-	3.8		0.0	
3	1.0	73	4.2	6.8	3.5	3.3	0.7
				6.4	3.3	3.1	0.9
	4.0	73	4.2	4.4	2.2	2.2	2.0
			· • -	4.2	3.0	1.2	1.2
	17.0	73	3.9	3.1	3.0	0.1	0.9
	1, .0	, 3		3.3	3.1	0.2	0.8

Ξ,

ť.

PHOTOSYNTHESIS DATA JULY 15 - 16

ACUSHNET RIVER

	DEPTH	TEMPERATURE	INITIAL D.O.	LIGHT D.O.	DARK D.O.	LIGHT - DARK	INITIAL - DARK
STATION	(FEET)	(⁰ F)	(mg/1)	(mg/1)	(mg/1)	(PHOTOSYNTHESIS)	(RESPIRATION)
4	1.0	74	4.8	2.9	2.5 3.0	0.4	2.3 1.8
	4.0	74	2.0	0.0	0.0	0.0	2.0 2.0
F	1.0	80	6 0			-0.2	
5	1.0	00	6.8	6.8 7.6	7.0 7.5	-0.2	-0.2
	7.0	78	6.9	6.7	7.3	-0.6	-0.4
				6.4	7.1	-0.7	-0.2

.

•

.

PHOTOSYNTHESIS DATA JULY 19 - 20

NEW BEDFORD INNER HARBOR

STATION	DEPTH (FEET)	TEMPERATURE (°F)	INITIAL D.O. (mg/1)	LIGHT D.O. (mg/1)	DARK D.O. (mg/1)	LIGHT - DARK (PHOTOSYNTHESIS)	INITIAL - DARK (RESPIRATION)
2	1.0	70	5.6	5.8. 6.2	5.2 4.7	0.6 1.5	0.4
	5.0	70	6.0	5.2	4.6 5.0	0.6 0.2	1.4 1.0
	30.0	70	5.5	5.7 5.5	5.7	0.0 -0.2	-0.2 -0.2
3	1.0	72	3.0	3.9 2.4	2.7 3.5	1.2 -1.1	0.3
	4.0	72	4.0	5.0 2.7	2.1 2.6	2.9 0.1	1.9
	17.0	72	4.5	2.7	2.9	-0.2 0.2	1.6 2.1
3A	1.0	70	3.8	1.7 4.7	1.3 1.1	0.4 3.6	2.5
	3.0	70	3.2	1.9 1.7	0.6 0.8	1.3 0.9	2.6
	9.0	70	3.7	1.5 1.0	0.8 0.3	0.7 0.7	2.9 3.4
3B	1.0	70	4.0	1.0 1.8	0.0	1.0 1.8	4.0 4.0
	2.0	70	3.6	0.3 0.3	0.0	0.3 0.3	3.6 3.6

58

1

;

PHOTOSYNTHESIS DATA JULY 20 - 21

NEW BEDFORD INNER HARBOR

STATION	DEPTH (FEET)	TEMPERATURE (^O F)	INITIAL D.O. (mg/1)	LIGHT D.O. (mg/1)	DARK D.O. (mg/1)	LIGHT - DARK (PHOTOSYNTHESIS)	INITIAL - DARK (RESPIRATION)
2	1.0	70	5.0	7.0	4.1	2.9	0.9
				7.4	4.1	3.3	0.9
	5.0	70	4.8	4.4	4.4	0.0	0.4
				4.0	4.3	-0.3	0.5
	30.0	70	5.1	3.2	4.3	-1.1	0.8
				4.1	4.7	-0.6	0.4
3	1.0	70	3.6	5.8	2.3	3.5	1.3
				6.1	3.4	2.7	0.2
	4.0	70	4.0	3.4	2.8	0.6	1.2
			-	3.0	3.2	-0.2	0.8
	17.0	70	3.4	1.9	2.2	-0.3	1.2
	- / • -		•	2.3	2.5	-0.2	0.9
3A	1.0	70	2.0	4.0	0.0	4.0	2.0
				7.3	0.0	7.3	2.0
	3.0	70	1.6	0.1	0.0	0.1	1.6
				0.0	0.0	0.0	1.6 ·
1	9.0	70	1.6	0.0	0.0	0.0	1.6
		, 0	1.0	0.0	0.0	0.0	1.6
3B	1.0	70	1.2	3.1	1.2	1.9	0.0
70	1.0	70	1.4	5.0	0.0	5.0	
	2.0	70	0.9	0.0	0.0	0.0	1.2
	2.0	70	0.9	0.8			0.9
				0.0	0.0	0.8	0.9

59

. . .

PHOTOSYNTHESIS DATA JULY 21 - 22

. .

NEW BEDFORD INNER HARBOR

STATION	DEPTH (FEET)	TEMPERATURE (°F)	INITIAL D.O. (mg/l)	LIGHT D.O. (mg/l)	DARK D.O. (mg/l)	LIGHT - DARK (PHOTOSYNTHESIS)	INITIAL - DARK (RESPIRATION)
2	1.0	74	2.5	6.3	6.0	0.3	-3.5
	5.0	74	5.6	8.7 5.4	5.0	3.7 2.7	-2.5 2.9
	30.0	74	4.6	8.0	2.8	2.6	3.2
				0.0	~~~		
3	1.0	74	3.6	4.6 5.2	1.6 1.6	3.0 3.6	2.0 2.0
	4.0	74	3.7	3.2 3.2	3.0 3.0	0.2	0.7 0.7
	17.0	74	3.4	3.1 3.4	3.0 3.2	0.1 0.2	0.4
3A	1.0	74	3.8	8.7	0.0	8.7	3.8
	3.0	74	3.8	5.6 3.0 4.2	0.0 0.0 0.0	5.6 3.0 4.2	3.8 3.7 3.7
	9.0	74	3.7	4.7	0.0	4.7 2.6	3.7 3.7
3B	1.0	74	1.8	2.6	0.0	2.6	1.8
	2.0	74	1.7	2.8	0.0	2.8 0.0	1.8
				2.1	0.0	2.1	1.7

. .

.'

60

4

. '

۰.

WEEKLY PHOTOSYNTHESIS SUMMARIES • •

STATIONS 2 AND 3

STATION	DEPTH	WEEK OF NO. OBSERVATIONS	JULY 12, 1971 AVG. PHOTO.	AVG. RESP.	WEEK OF NO. OBSERVATIONS	JULY 19, 197 AVG. PHOTO.	
2	1.0	8	0.4	0.7	6	2.0	-0.5
	5.0	8	0.1	1.1	6	1.0	1.6
	30.0	6	1.0	1.5	4	-0.5	0.2
3	1.0	8.	2.3	1.2	6	2.2	0.9
	4.0	7	1.5	2.0	6	0.6	1.1
	17.0	. 8	0.5	1.9	6	0.0	1.1

· ...

61

. *

Following the sampling program on the Acushnet River and New Bedford Harbor it was determined that a shoreline survey to locate all pertinent source discharges was necessary. Engineers of the Southeast Regional Office of the Division of Water Pollution Control, in cooperation with the Water Quality Section and the United States Coast Guard Reserves, conducted the survey August 24 through September 1, 1971. Through the efforts of Lt. Comm. John J. Fitzgerald, Commanding Officer ORTUPS 01-82045, the United States Coast Guard allowed the training ship Courier to be assigned to the New Bedford Area. An orientation period was held Tuesday morning August 24, aboard the Courier, following which, group assignments were made. Shoreline and boat patrols were utilized to locate the outfalls.

The survey revealed 130 pipe and waste source locations. Discharges varied from no flow from some sources to an average of 3 million gallons per day from sanitary sources and 1 million gallons per day from industrial sources. The combined results of the river sampling program and the shoreline survey established that the inner New Bedford Harbor is receiving pollution loads which render the waters unsuitable for all water usage.

Members of the Southeast Regional Office are starting an effective program of pollution abatement in this area by conducting inplant investigations of all industrial discharges. The data obtained from these investigations will be used to evaluate the need for pretreatment prior to connection to the municipal sewage system or for full treatment with discharge. In addition, the data will assist Division personnel in the evaluation and

review of plans for private industry and the plans being formulated by a number of consulting firms in the updating of the sewerage system for the City of New Bedford and Towns of Acushnet and Fairhaven. The present status of the pollution abatement program by these municipalities is as follows:

- 1. Fairhaven The town has recently completed a new secondary sewage treatment plant, pumping stations, and interceptors to convey all wastes to the treatment plant providing secondary treatment with chlorination prior to discharge to the Inner New Bedford Harbor. One outfall has not been connected; however, the town has been directed by this Division to proceed with this connection prior to releasing funds for final payment.
- 2. Acushnet The Town of Acushnet is not meeting their implementation dates. Funds have not been appropriated for the construction of sewers to tie into the City of new Bedford. Private corporations and the town storm drain are discharging inadequately treated wastes to the Acushnet River and Inner New Bedford Harbor causing contravention of the water quality standards. Robert Childs Associates, consultants, have recommended to the Town to appropriate funds and proceed with final planning for connection to New Bedford.
- 3. New Bedford The City of New Bedford, located on the westerly bank of the Acushnet River and Inner Harbor, is presently constructing a 130 MGD primary sewage treatment plant with discharge into the Outer New

e we excapedford@Harbor@through an outfall located of Ft. Rodand man. The western bank of the Acushnet River is heavily and a major problem exists in this area

second because of separated industrial waste discharges and approximately 46 combined sewage overflow points. Urban renewal projects under construction or in planning stages in the heavy populated shoreline areas include a program of sewer separation which will assist in eliminating some sanitary wastes now combined with storm drainage entering the Harbor. Two major problem areas are located at the Sawyer Street Pumping Station and Coffin Avenue Pumping Station. The City has engaged the engineering firm of Tibbets Engineering, New Bedford, to prepare an engineering plan to correct major overflows into the harbor. The engineers have been limited to a ceiling of \$15,000,000 in overall construction costs for planning, whereas complete separation is estimated to cost \$90,000,000. The Sawyer Street Station presently in dry weather has a "constant sewage overflow. Stop logs are being installed at the present time in an effort to divert this overflow into an 18-inch sanitary sewer. Under consideration for correcting the Sawyer Street problem is the construction of a pumping station and interceptor designed for a dry weather flow of 30 million gallons per day. Flows in excess of this, which is estimated to be in the vicinity of 70 million gallons a day, will be diverted to a micro filter, then chlorinated prior to discharge into the Inner Harbor. Sludge from the micro filter would be backwashed into the sanitary sewer.

There would be stations similar to Sawyer Street located at Coffin Avenue, State Pier, and upstream from Route 6.

Other major problems, are industrial wastes discharges (presently being investigated), oil discharges by vessels and town storm drainage systems and the organic bottom deposits existing within the Inner Harbor. Appended are listings of pipe discharges, complaints, industries, and status of field investigations to date.

The City of New Bedford has been requested by the Division on advice by the Southeast Regional Office to formulate an industrial waste survey of waste discharged to the City of New Bedford sewerage system. The City will then enforce its sewer use ordinance requiring pretreatment of industrial wastes. The Southeast Regional Office will cooperate with the City in the programming of this industrial waste survey.

It is the opinion the the Regional Office that a permanent local authority - namely, the New Bedford Harbor Commission - be given funding and enforcement authority to coordinate local supervision of a water pollution abatement program within the harbor. This Commission would oversee complaints and delegate authority to the various conservation and pollution abatement groups in the vicinity, such as the Special Committee on Pollution, Counselor David R. Nelson, Chairman, for follow-up to the individual complaints and problems. Investigation would be conducted by the Division personnel on the fish processing plants and of sanitary and oil discharges from the New Bedford and Fairhaven fishing fleet should be coordinated through the Commission due to the political-economic situation existing in the fishing industry in Massachusetts today.

Two major fish kills involving menhaden and striped bass occurred in New Bedford during 1970, an indication of the degree of pollution existing in the Inner Harbor. Observations by Division personnel noted oil slicks

existing within the inner harbor in the vicinity of the New Bedford and Fairhaven fishing fleet dock areas. Debris and floating solids including fish gurrey is visible each and every day. Oil spills from New England Petroleum have been reported in the past. Thermal pollution does not seem to be a problem in respect to New Bedford Gas and Electric's generating station. However, the overall affect of thermal pollution from industrial wastes discharges to the inner harbor will have to be evaluated. Past fish kills have been attributed to the combination of the sanitary sewerage and industrial waste pollution depleting the available dissolved

oxygen.

and the second second second second

and the second second

NEW BEDFORD HARBOR POLLUTION SURVEY

SOUTH DARTMOUTH IN ADVISOR BEEN AND A DEPENDENT OF	
Clark's Cove	
l. 2-3" CI and 1-4" A- Land drains behind white house at end of William St No Flow	1
2. 1-36" RC - North of Mohel residence - Slight Flow	
" 3. 1-12" RC - 100 yards south of oil yard - Possible Sewage flow	-Low
4. 1-6" CI - yard drain from oil yard at foot of Rodgers Str No flow - Appears abandoned	ceet -
NEW BEDFORD	
Clark's Cove	
5. 2-24" CI - 25 yards North of end of Rodgers Street - Clea	ar flow
6. 5-4" CI - Traver's Seafood - Padnaram St One (1) minor	flow
7. 1-60" RC - End of dike - 50 yards north of Traver's Seafo No flow	od -
8. 1-18" CI - 10 feet to South of jetty - Opposite Woodlawn Small Clear Flow	St
9. 1-18" CI - 5 feet to north of jetty opposite Dudley St flow	- No
10. 1-18" CI - Located in retaining wall - 200 ft. north of Hazelwood Park Entrance - End of pipe visible No flow	_
ll. 1-18" CI - 100 yards north of Lucas Street End of pipe visible - No Flow	e not
12. 1-18" CI - Opposite Oaklawn Street - End of pipe not vis No flow	ible -
13. 1-8" VC - Opposite Cattle St No flow	
14. 1-60" CI - Located at foot of Coral St North of pumpin station - No flow	ıg
15. 1-18" CI - 100 yards North of Bonito St No flow	
16. 1-18" VC - South of Seymour St No flow	

67

NEW BEDFORD

Outer Harbor

- 17. New Bedford Outfall Sewer Point of discharge not visible
- 17. a. Storm drainage to hidden box 200 yards from first large pier extension No flow
- 18. Storm drainage to hidden box Just inside Ft. Rodman Gate No flow
- 19. 1-18" CI Located beneath Rip-Rap and below water at end of jetty South of Seymour St. - Cloudy Discharge
- 20. 1-24" CI 100 ft. north of Portland St. No Flow
- 21. 1-12" CI Storm drain opposite first street north of Portland St. - No flow
- 22. 1-36" CI Storm drain at end of jetty opposite Ricketson St. - No flow
- 23. 1-12" VC and 1-24" VC Opposite Aquidneck St. No flow but possible combined overflow
- 24. 1-24" CI Storm drain 400 feet north of Aquidneck St.
- 25. 1-12" CI Located 5 feet to the South of #26 No flow
- 26. 1-18" and 4-12" 100 ft. north of pump house 18" Water Temperature 100° - The 12" lines appeared abandoned
- 27. 1-12" VC 300 ft. South of #28 Flow approximately 30 -40 gpm Temperature 95°
- 28. 1-24" CI At end of small jetty across from Butler St. -Submerged - Slight discoloration in vicinity of pipe
- 29. 1-48" VC Located outside of dike opposite chimney stack of Cornel Dubilier - Cloudy discharge - Floating Solids

30. 1-8" RC and 48" concrete culvert - Corner of Rodney French Blvd. and Cove Street -No flow but known to be sewer overflow

Inner Harbor

31. Gifford St. - Sewer outfall - small flow - Discolored

32. 1-24" CS - Blackmer St. outfall

NEW BEDERD

, ;

,

In	ner Ha	arbor
	33.	Ell. Vee Dee Filet House - Noted entrails- Oil - Suds - and cloudy discharge under dock
	34.	South of New Bedford Gas & Electric by Ell Vee Dee Filet House
	35.	2-4 ft. RC - Culverts - New Bedford Gas & Electric - No Discharges noted
3	36.	4" to 12" multiple pipes - Inlet North of Culverted discharge - New Bedford Power and Light - Light green suspended solids noted
	37.	Gem Filet House - Small Operation appears shut down
	38.	1-60" RC - North of Gem Filet near Campanella Construction Trailer - Oil rainbows - Sewage & fish entrails noted
	39.	Seaview Filet Company - Homer's Wharf - wash down into harbor
	40.	New Bedford Fish Products - South of State Pier - Wash down into Harbor
	41.	Multiple 6" and 8" CI - Located at head wall of inlet to Pier 2 - No discharge but oil noted in water
	42.	1-8" CI - Pier 3 area - Minor flow - Oil films noted in water
	43.	Cast Iron Pipe - New Bedford Ice Co Clean Water Flow
	44.	1-18" CI - Crystal Ice Co Clear Water Flow
	45.	1-12" VC - located 150 ft. from West end of Fish Island (South Side)- Appeared abandoned
	46.	2-6" CI - West end of Fish Island (North Side) Yard drain adjacent to Route #6 Bridge - No flow
	47。	Yard drains from Glen Oil Co No flow
	48.	Fish Island - Unloading of fish wash down - Discharge into Harbor
	49.	1-18" RC - Street drain at foot of Route #6 Bridge
	50.	1-18" RC - Street drain for Route 6 Bridge (North Side)
	51.	1-18" CI - Discharge from Quaker Oats flowing 1/3 full
	52.	2 ft. wide runoff trough and two 2" P - No flow
	5 3.	1-48" RC - North of Quaker Oats - Herman Melville BlvdNo Flow

ć

NEW BEDFORD

Inne	r Har	bor
	54.	1-36" RC - 1500 ft. North of #53 - Herman Melville Blvd. • Flowing Sewage
•	55.	1-6 ft. box culvert - 200 yds. South of Revere Copper & Brass - Herman Melville Blvd Large volume of sewage
	56.	1-12" and 1-24" CI and 2-36" RC - Opposite Wamsutta St small clear flow
	57.	2-12" RC - and one storm culvert - South side of Revere Copper & Brass - Pipes not flowing but culvert was - Rainbow films noted
•	58.	a. Revere Copper & Brass - 6" VC - 3 feet below platform
		b. 1-18" VC - 150 ft. South of North end of pier
•		c. 1-24" RC - 3 feet below platform- All were submerged outfalls
	59.	1 -10" VC and 1-8" VC - No flow in 10 inch - Sewage and cooling water in 8" - Both outfalls submerged
1	60.	1-10" CS - To rear of Alpine Co No flow
	61.	1-12" RC - Coggeshall St Bridge drainage - No Flow
	62.	1-12" CI - Coggeshall St Bridge Drainage- No Flow
	63.	1-60" RC - Sawyer St Outfall - Oil - Sewage and in- dustiral waste noted - Heavy Flow
	64.	Storm drain with hidden box - Behind North end of Fairhaven Corp - No flow
	65.	1-6"P - Industrial - Not flowing
	66.	Multiple 1" and 4" CI - Isotronics, Inc Flowing from back wall of building into river
E	67.	1-5 ft. open culvert - End of Coffin Ave High volume of raw sewage
	68.	1-10" CI - Located 5 ft. North of #67 - No flow
	69.	l-4" CI - 50 ft. North of Coffin Ave American Press Co No Flow
		· · · · ·

ć i

Inner Har	bor
7 0.	Multiple 4" P - Behind Cameo Curtain & Draperies Co Riverside Ave.
71.	1-72" Culvert - Manomet St. Outfall - Raw Sewage
72.	1-36" CI - 200 ft. north Manomet St No Flow
73.	3-12" CI - Behind New Bedford Rayon Co - 100 yds. North of Manomet St Minimal flow - Oil noted in discharge channel
74。	1-24" CI - Behind Acushnet Process Plant D - No flow
75.	1-60" RC - Box Culvert - Sewage and oil noted - North of Acushnet Process Plant D
76.	1-48" RC - Box culvert behind Tibbets Engineering Co - Directly behind large white stack - No flow
77.	Multiple 6" and 12" VC - Behind Fiber Leather Corp Intermittent discharge - Oil and much debris and settled matter noted in vicinity of discharge.
78.	3-24" CI - South end of Acushnet Building C - Slight Flow
79.	<pre>l-10" VC - Behind Acushnet Building C - 20 yds south</pre>
80.	1-6" VC - Behind Acushnet Building C - 20 yes. South of 81 - No flow
81.	<pre>1-4 ft. X 4 ft. concrete duct - South end of Aerovox Corp Steady sewage flow</pre>
82.	2-10" VC - Directly behind Aerovox - 25yds. South of #83 - Slight Sewage Flow
83.	2 ft. Concrete Duct - North end of Aerovox - 40 yds. South of #84 - Steady Flow of clear water
84.	4 ft. box culvert - concrete - 15 ft. to the south of #85 - Steady water flow - Some oil
85.	1-18" VC - Beyond Fence at end of Acushnet Drive - Steady flow - some oil

NEW BEDFORD

.

.

Inner Harbor

86.	1_18" RC _	Drain from Wood St. Bridge - North Side
87.	1-12" VC -	Drainage from Wood St. Bridge - North Side
88.	1-60" RC -	150 yds. North of Wood St. Bridge - Raw Sewage

ACUSHNET

Inner	r Harl	or franklik a statistick i sta
	89.	1-2" and 2-6" CI - Foundation wall of Bear Wheel & Brake Co No Flow in 6" pipes - 2" pipe appears to be oil discharge
	90.	Storm drain to hidden box - Slight Flow across river from Reliable Homes
• •	91.	1-12" RC - Drainage from Wood St. Bridge - Acushnet side
	92.	Unknown pipe buried under debris - North edge of Wood St. Bridge
	93.	Acushnet Processing - Golf Ball Division
	¥	a. Oil seeping out of Rip-Rap Acushnet Process Co Golf ball Division - 20 ft. South of Red Building
		b. 1-10" VC - Acushnet Golf Ball Division - Located at foot of first brick building south of bridge
		c. 1-8" VC - Acushnet Golf Ball Division - 100 yds. South of Bridge - Pipe Flowing half full - Temp. 100°
		d。 1-4" CI - 10 yds. South of #93c- No flow
		e. 3-12" VC - All Pipes flowing - Black oil noted in two of them
		f. 1-24" VC - Slight flow of cloudy grayish solutions
		g. Oil draining into marsh grass at edge of dumping pit
	94.	Septic tank discharge - Acushnet Rest Home - North Main St.
	95.	Drainage ditch from Warren Bros.
Ţ		

Inner Harbor

٠

FAIRHAVEN

96. 1-3 ft. x 8 ft. storm culvert - located opposite Magnolia Ave. - Storm drainage

FAIRHAVEN

•

1

r ^t

1 5

. . .

	Inner	Harbor		
			ditch - Low flow - Trace of oil	- p., p.,
		97.	-18" CS - foot of Veranda Ave 1-24" RC - drainage From Coggshall Bridge	
•	1 1 1 1 4 B	98.	-12" RC - 100 yds. from East End of Coggshall Bridge - South side - No Flow	
		99.	-12" RC - Storm drain behind sea wall end of street south of radio towers - No flow	and a second
		100.	-4" VC - Land drain adjacent to white house at end of Pilgrim St No flow	Alas A fana a ge regeneration of the state
		101.	-36" RC - 20 ft, North of Route 6 Bridge - No flow	
			-12" RC - Between Stop & Shop and Eugene's Steak House Bope's Island - Half submerged	
		103.)il visible on embankment - Possibly waste crank case oil behind John Dugan Auto Service Center	
		104.	3-4" VC - only l pipe flowing Sewage	
		105.	-10" VC - Yard drain - in sea wall South of WBSM T∀ and Radio Station - No Flow	dar an Ing Processing of Providentia Astro
		106.	2-6" CI - Storm drains at end of Skipper Motor Inn - No Flow	An de dedy concerning and an advect the second
		107.	Storm water pumping Station across from Park Motors on Middle St.	ويتبعله والمتعمية والمترافع والمترافع والمترافع المتعاولين والمستوافعا والمرافع
		108.	-10" VC - Storm drain adjacent to West End Corp. corner of Washington & Water Sts No Flow	
		109.	2-4" CI - Rear of Texaco Marine Products (Green building) No Flow	Contraction of the second seco
		110.	-4" CI - Located under wharf - McClean's Seafood Inc - 6 flowing - 3 dry - Clear Flow	
		111.	-4" CI - Behind New Bedford Seafood Corp - Clear flow	
		112.	-10" VC - Located at North side between first and second piers - No Flow	
		113.	L-24" RC - Storm drain - 100 yds. North of Hathaway Machine Co South Side - No Flow	
		114.	L-18" RC - Storm drain at foot of Church St No Flow	
		115.	Fairhaven outfall - Could only see the boil - No flowing matter noted.	

FAIRHAVEN

Inner Harbor 116. 1-24" CI - Located at end of pier on Fairhaven Marine Inc. - No Flow Outer Harbor - 48" Culvert through dike east of Ft. 117. Phoenix- Waste discharge from Atlas Tack Co. 118. 1-12" RC - 100 yes. South of Mack's Soda Bar - Clear Flow 119. 1-4" CI - South of 15 Bayview Rd. - Appears to be house drain - minimal flow 120. 1-8" CI - South of #119 - Minimal Flow 1-18" CS - Redrock Beach - abandoned 121. 122. 1-12" RC - Foot Bonney Street - No Flow 100 a dia kaominina dia kaomini 1999 . . 74 •