Shellfish Sanitation Program Technical Report

Food and Drug Administration

.

Northeast Technical Services Unit

North Kingstown, RI 02852

.

U.S. Department of Health and Human Services Public Health Service

SANITARY SURVEY OF SHELLFISH WATERS BUTTERMILK BAY, MASSACHUSETTS JULY 1985

÷

DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR FOOD SAFETY AND APPLIED NUTRITION SHELLFISH SANITATION BRANCH

1

DRAFT

SANITARY SURVEY OF SHELLFISH WATERS BUTTERMILK BAY, MASSACHUSETTS JULY 1985

submitted to Region I Shellfish Specialists

bу

John F. Musselman

Northeast Technical Services Unit Davisville, Rhode Island

March 1987

.

DRAFT

EXECUTIVE SUMMARY

A survey was conducted during the period July 8-19, 1985 of Buttermilk Bay, Massachusetts to determine the degree of pollution in the bay during the summer, differentiate the sources of pollution and determine whether management practices could be established to permit harvesting of safe shellfish. A combination of water sampling for microbiological analysis, shoreline reconnaissance and drogue studies was used. The period had typical summer rains which resulted in bay waters being degraded so as not to meet the "approved" growing area criteria of the National Shellfish Sanitation Program.

Rainfall of 0.5 inch or more in 24 hours was found to pollute tributary streams and bay waters with unacceptable levels of fecal waste. Differential tests beyond those established for regulation of shellfish waters were used to show that the predominant sources of bacterial pollution in the bay are feces of humans and other warm-blooded animals. Drogue studies and water sampling showed that pollution can be rapidly distributed by tidal action throughout the bay. It is also removed relatively quickly once input ceases so that water quality meets recommended bacterial levels after about a day. For such areas, which are intermittently polluted, a "conditionally approved" classification must be developed or else shellstock made safe for consumption by relaying or depuration. If control agency resources are insufficient to provide for these practices, the area cannot meet the criteria for direct marketing of its shellfish and correctly remains in the "prohibited" or "restricted" classification.

ii.

	Page
EXECUTIVE SUMMARY	ii
TABLE OF CONTENTS	iii
ACKNOWLEDGEMENTS	iv
LIST OF TABLES	v
LIST OF FIGURES	vi
INTRODUCTION	1
MATERIALS AND METHODS	2
Sampling Stations	2
Sampling Methods	5
Analysis Methods	5
	0
RESULTS AND DISCUSSION	6
Rainfall Implications	6
Stream Samples	7
Rav Samples	ģ
Bactorial Indicator Interpretation	16
Deciental Indicator Interpretation	17
Physical Data and hydrographic factors	17
CONCLUSIONS	01
	21
	24
	25
Bacteriological Data - Bay Stations	25
Bacteriological Data - Stream Stations	32

<u>ب</u>

Table of Contents Buttermilk Bay, Massachusetts - July 1985

•

ACKNOWLEDGEMENTS

Sincere appreciation is extended to the following people and organizations for their cooperation and assistance in this study.

Massachusetts Department of Environmental Quality Engineering

Southeast Region - Field June M. Cubillos Tena J. Davies Virginia McHugh John Mendes Daniel Viscardi

Laboratory Ann Malewicz Paul Prenda

FDA Region I, Boston Lawrence C. Edwards Ira J. Somerset

FDA, NTSU

Linda A. Chandler William D. Watkins Cynthia L. Tully

LIST OF TABLES BUTTERMILK BAY, MASSACHUSETTS 1985

TABLE	DESCRIPTION	PAGE
1.	Station Descriptions	4
2.	Rainfall in Watershed	7
3.	Median Bacteriological Results Stream Stations - Dry Weather	7
4.	Median Bacteriological Results Stream Stations - Rain Dates	8
5.	Summary of Bacteriological Data - Stream Stations	8
6.	Summary of Bacteriological Data - Bay Stations	10
7.	Dry Weather Bacteriological Data - Bay Stations	11
8.	Rain Date Bacteriological Data - Bay Stations	12
9.	Summary of Physical Data - Bay Stations	17

v

LIST OF FIGURES BUTTERMILK BAY, MASSACHUSETTS 1985

FIGURE	DESCRIPTION	PAGE
1.	Sampling Stations	3
2.	Station 7 - Probability Plot - All Data	14
3.	Station 7 - Probability Plot - Rain Influence	14
4.	Station 17 - Probability Plot - All Data	15
5.	Station 17 - Probability Plot - Rain Influence	15
6.	Drogue Studies - July 11, 12 & 16	19
7.	Drogue Studies - July 15 & 17	20

vi

INTRODUCTION

During the period of July 8 through 19, 1985 a sanitary survey of Buttermilk Bay and its immediate watershed was conducted. The chief of the Massachusetts Southeast Region Department of Environmental Quality Engineering (DEQE) Shellfish Section and the FDA Region I Shellfish Specialists requested Northeast Technical Services Unit (NTSU) to participate in the study to help obtain more specialized information on the sanitary quality of the bay for the harvesting of clams (<u>Mya arenaria</u> and <u>Mercenaria mercenaria</u>) than was available using state resources alone. The purposes of the study were:

- To obtain indicator bacteria data on bay water from which to determine proper classification of the area
- To employ relationships between different bacterial indicators to determine the probable sources and hazards of bacterial levels found
- 3. To define the relationship between rainfall and runoff into the bay from which performance criteria for managing the shellfishery can be established
- 4. To identify specific pollution problems impacting the clam resources so control efforts can be directed to their correction

Previous study work by DEQE personnel had shown sporadic high bacterial levels in the bay which resulted in closure of the westernmost shoreline (Wareham) of Buttermilk Bay and the northeastern portion of Little Buttermilk Bay. Pollution sources suspected of causing high bacterial counts in the bay were the more densely populated areas along the western and northern shores. Habitation around the entire bay is served by subsurface waste disposal systems. There is also runoff from a few farms where domestic animals or fowl are kept as well as drainage from actively cultivated cranberry bogs. In addition, there is a large bird population inhabiting the area during some parts of the year.

The survey was conducted by NTSU with the full participation of Massachusetts and FDA Region I personnel. Samples were analyzed by NTSU and Massachusetts microbiologists at the Lakeville DEQE laboratory. Supporting bacterial indicator differentiation work was conducted during and following the survey at the NTSU laboratory.

This report was prepared for shellfish control officials familiar with the bay, its pollution sources, and classification problems. Therefore, it does not report a comprehensive study of the bay but covers only information developed during the specific survey period. It is intended to assist in formulating control practices necessary for ensuring safety of shellfish harvested from the bay.

MATERIALS AND METHODS

<u>Sampling Stations</u> The sampling stations for collection of stream and bay samples are shown in <u>Figure 1</u> and described in <u>Table 1</u>. Bay stations were selected to correlate with previous DEQE sampling stations to facilitate comparison with previous data. Minor adjustments were made in their spacing to optimize coverage of the study area. Stream stations were selected to isolate potential pollution sources. New stations were added as suspected sources were found by the shoreline crew.

BUTTERMILK BAY - STATION DESCRIPTIONS

STATION

DESCRIPTION

B-01	BAY STATION	1 SEE MAP - FIGURI	E 1
B-02		2 1 1 1	н
B-03		3	
B-04		4	
B-04A		MID SIREAM BEIW B-	04 & B-04A
B-04B	11 11	OPP B-04 NR CAPI H	ARRIS
B-05	8 H	5 SEE MAP - FIGUR	E 1
B-05A	11 44	OPPOSITE B-05 IN S	TREAM FLOW
B-05B	11 11	CULVERT AT ROAD NR	B-05
B-07	H · H	7 SEE MAP - FIGUR	E 1
B-10	n n	10 " " "	11
B-11	n n .	11 " " "	63
B-12	и и	12 " " "	0
B-14	11 11	14 " " "	н
B-15	H H	15 " " "	0
B-17	an 16	17 " " "	11
B-19	и и	19 " " "	11
BS-CH9	u n	CH9 " CHANNEL M	ARKER '9'
		SOUTH OF WHITTEMO	RE PT.
BS-BB	н н	AT RR BRIDGE - MOU	TH OF BAY
BS-01	и и	S-1 SEE MAP - SAMP	LED FROM SHORE
BS-02	н п	S-2 " " "	0 0
BS-03	H H	S-3 " " "	11 15
BS_0A	11 H	S-4 " " "	84 - 48
	CRANBERRY BOG	5	
	CAPTAIN HARRIS' DIS	CHARGE PIPE	
ELECAV			
	HIDEAWAY REACH STRE	AM - THOMPSON RD	
		FPMILK	
		NIET	
MKPGIN			
MKPLUT	- U		
MRSH DR V	MARSH DRAINAGE (NEX		
OHBC	ULD HEAD. UF BAT CRE	EK - AI KUAD	C DAV)
OHBCMO		AI MUUTH (ENTERIN	G BAT)
RDBR /	RED BROOK - AT HEAL	O OF BAY ROAD	
RDBRFL	" " AL ELSE	I LADDER	
		DIDELINE	
RDBRGP V	" " AT GAS	PIPELINE	
RDBRGP RDBR495	" " AT GAS " AT HWY	PIPELINE 495	

Sampling Methods Bay water samples were collected by two or three person crews of FDA and DEQE personnel using a survey boat provided by DEQE. Another two or three person crew collected stream samples and conducted surveillance of the shoreline and watershed. Bay samples were collected primarily within an hour of low tide to capture the minimal dilution of pollution sources. On four of the ten sampling days an additional set of samples was taken near high tide for comparison purposes. Samples were collected in sterile Nalgene bottles and kept on ice until assayed, normally within six hours of collection. At the time of sampling, physical data were recorded as follows: For all bay stations, the surface and bottom water temperature and salinity were measured using a Beckman RS5-3 electrodeless induction salinometer (Beckman Instruments, Inc., Cedar Grove, NJ). Depth of water and prevailing weather conditions were also recorded on the sample bottle labels. For all stream samples, water temperature and salinity were measured using a thermometer and hydrometer set. Flow variations were noted as they occurred following rainfall.

<u>Analysis Methods</u> All bay and stream samples were assayed for total and fecal coliform content by the five tube Most Probable Number (MPN) procedure (APHA 1970). MPNs for <u>Escherichia coli</u> (<u>E. coli</u>) were obtained using the MUG method (Rippey et.al. 1987). A third of the samples were also assayed for fecal streptococci (FS) content by a method recommended by the Environmental Protection Agency for improved FS recovery (EPA 1978). The method employs primary isolátion of FS by a five tube MPN series using Azide Dextrose Broth (DIFCO) as in the APHA method. Confirmation is on Bile Esculin Azide (BEA) Agar (DIFCO). Isolates exhibiting brownish-black colonies with brown halos on BEA are recorded as FS positive. In addition,

Omhent

these positive colonies were subcultured on Brain Heart Infusion (BHI) Agar slants (DIFCO) for later biochemical differentiation.

RESULTS AND DISCUSSION

<u>Rainfall Implications</u> The nearest station recording weather information for the National Weather Services is is the Cranberry Experiment Station at East Wareham (Lat. 41⁰ 46'N, Long. 70⁰ 40' W) approximately two miles west of the bay. This station recorded rainfalls for 1983-85 as follows:

Inches/Day	Total Number	Average per Season
> or =	1983-1985	(May-September)
0.25	65	22
0.50	42	14
0.75	27	9
1.00	17	6
1.50	7	2
2.00	3	1

Therefore it can be expected that rain of 0.50 inch or greater in a 24 hour period falls about 14 times during the average summer season. Rains greater than 1.00 inch in 24 hours have just less than half the 0.50 inch frequency. Rain which affected bay water quality during the survey period July 8 through 18, 1985 fell on the 11th, 16th and 17th. Comparison with the sampling crew rain gauge established near the bay and the official record is shown in Table 2. These are typical of summer rainfall events in this area, which at times can be quite intense.

BUTTERMILK BAY, JULY 1985 RAINFALL IN WATERSHED

	EAST WAREHAM	SURVEY GAUGE	- NOTES
1-10	0	-	rain comm. 2340h
11	0.34	0.41	ended by 0730 h
12	-	-	
13	-	-	
14	-		
15	Т	-	
16	0.11	0.1	overnight
17	1.54	1.86	during day
18	-	0.03	overnight
19	-	-	-
20	-	-	

<u>Stream Samples</u> The rainfalls of July 11th and 17th caused increases in flow of the tributaries sampled. These flows were not accompanied by large increases in bacterial levels as is frequently observed. Total coliform ranged from a low of 23 MPN/100 ml at the White Island Pond outlet to highs of 16,000 MPN/100 ml or greater at Hideaway Village Stream on the 9th, 10th, 15th and 16th. Fecal coliform ranged from a low of 2.0 MPN/100 ml at the Makepeace Cranberry Bog inlet to a high of 3500 MPN/100 ml at Hideaway Village Stream on the 16th. For the highest level bacterial sources there appeared to be little correlation with rainfall. This is demonstrated for the four key stream stations by separating the data into dry weather and wet weather days as shown in Tables 3 and 4.

TABLE 3

BUTTERMILK BAY - DRY WEATHER MEDIAN BACTERIOLOGICAL RESULTS - STREAM STATIONS

STA	NO	MED_TC	MED_FC
CBOG	2	690	35
HDWYST	4	10700	915
OHBC	2	795	47
RDBR	3	220	31

BUTTERMILK BAY - RAIN DATES MEDIAN BACTERIOLOGICAL RESULTS - STREAM STATIONS

STA	NO	MED_TC	MED_FC
CBOG	2	900	110
HDW 151	2 2	9200	490
RDBR	4	790	395

Note that the Red Brook Station showed the biggest increase in FC medians for rain dates. The daily values for Red Brook (<u>Appendix</u>) show that there was a tripling of FC densities for the days of rainfall (July 11, 16, and 17). The other stream stations did not experience this more typical response. The stream inputs are summarized by the median and maximum values in Table 5.

TABLE 5

BUTTERMILK BAY - STREAM STATIONS SUMMARY OF BACTERIOLOGICAL DATA MEDIANS AND MAXIMUMS OF SELECTED STATIONS

STA	NO	MED_TC	MAX_TC	MED_FC	MAX_FC
CBOG	4 [.]	900	1100	48	170
HDWYST	9	9200	17000	490	3500
OHBC	5	1100	1100	70	490
RDBR	7	790	2200	110	490

. . .

<u>Bay Samples</u> The bacterial levels in the bay stations are summarized in <u>Table</u> <u>6</u> which gives overall median and maximum values found during the survey period and percentages of samples greater than TC 230 MPN/100 ml and FC 43 MPN/100 ml. These values were separated into dry and rain date results for <u>Tables 7</u> <u>and 8</u>. The NSSP "approved" growing area criteria for TC requires that the median value not exceed 70 MPN/100 ml with no more than 10 percent of the samples exceeding 230 MPN/100 ml for the five tube test. As an alternative many states have adopted the NSSP recommended FC criteria of a median value not exceeding 14 MPN/100 ml with no more than 10 percent of the samples exceeding 43 MPN/100 ml for the five tube test. Many investigators have shown that FC give a truer indication of the presence of fecal material especially where land runoff is present and may be carrying TC from soil or other sources of lesser sanitary significance. Either of these approved criteria must also be met for the open periods of a "conditionally approved" area.

<u>Table 6</u> shows that for the aggregate of all samples eight of the 17 principal stations (considering 5 and 5A together) failed to meet one or more of the NSSP recommended criteria for "approved" areas. Daily values for selected stations were plotted on logarithmic-probability paper to determine their normality of distribution for statistical interpretation as described by Velz (Velz, 1951). If such data forms a straight line it can be compared to the slope of the standard distribution line for a large number of samples taken from water whose quality is not changing (Velz line). This slope is dependent on the number of tubes inoculated per dilution in arriving at the MPN values; in this case five. For data from water of changing quality, the estimate of the true mean bacterial density is taken as the 50 percentile value from the

ς.

~

BUTTERMILK BAY - DRY WEATHER

MEDIAN BACTERIOLOGICAL RESULTS - BAY STATIONS

STA NO MED_TC MED_FC

B-01	8	9	2
B-02	8	5	3
B-03	8	12	6
B-04	8	28	12
B-04B	1	70	33
B-05	5	22	2
B-05A	3	790	330
B-07	8	5	2
B-10	8	6	3
B-11	8	3	2
B-12	8	1	1
B-14	8	9	5
B-15	8	2	1
B-17	8	2	2
B-19	8	6	2
BS-CH9	1	2	2
BS-RR	1	13	13
BS-01	8	9	5
BS-02	8	36	11
BS-03	7	7	5
RS-04	7	49	8

BUTTERMILK BAY - RAIN DATES

MEDIAN BACTERIOLOGICAL RESULTS - BAY STATIONS

STA NO MED_TC MED_FC

B-01	4	102	26
B-02	4	150	17
B-03	4	64	12
B-04	5	110	23
B-04A	2	90	33
B-04B	1	490	170
B-05	2	129	8
B-05A	5	2200	350
B = 05B	2	506000	147000
B-07	4	77	14
B-10	4	77	3
B-11	Δ	590	51
B_{-12}	Δ	18	5
B_{-14}	Δ	32	ğ
B_{-15}	5	220	17
B_{-17}	7	25	1/ Q
B_{-10}	7	20	7
0-13	1	20	, 5
	۲ ۲	12	0
D2-01	4	200	20
DS-02	4	290	20
DS-03	0	490	90 0E
05-04	D	410	95

ŕ

plot. The amount the slope is greater than the standard distribution slope indicates the degree of real changes in water quality during the sampling period. When the data does not form a straight line, it is not uniformly distributed and the cause should be determined. Usually a break in the line is caused by samples being taken under differing pollution conditions such as a mixture of dry and wet weather or high and low tide dilution effects. Data should be separated in these instances and analyzed separately.

Examples for this survey are shown in <u>Figures 2 through 5</u>. In <u>Figure 2</u> for Station B-07 the breaks in the plots for both total and fecal coliform are evident as well as the extreme variability in comparison to the Velz slope and NSSP recommended upper limit on variability. Of interest is that graphically this station is seen to exceed the 90th percentile upper limit of 43 FC whereas by sample count it does not (less than 10% of samples exceed 43). In <u>Figure 3</u> improved agreement of the data with a straight line for the rain days is evident. The remaining steepness of slope, however, is indicative of other sources of variability which can be related to a mixture of high and low tide samples plus influences from different amounts of rainfall and undetected pollution sources activated on the dates plotted. From this analysis it can be concluded that Station B-07 does not meet the NSSP recommended limits under adverse hydrographic conditions; in this case rainfall. Conversely, a similar analysis of the data for dry weather days would show that water quality isacceptable then.

Figures 4 and 5 show a similar result for Station B-17. Note that this station also fails to meet the recommended limits on variability for periods

1.7 5.7

۶. ¹⁹ , ¹⁹ ,

of rain influence. Likewise, analysis of bay stations B-O1, B-O2, B-O3 and BS-O1 show that they would exceed the variability limit for the rain days. The three remaining bay stations, B-12, B-14, and B-19, were the only stations meeting the NSSP recommended limits for all conditions during the survey.

<u>Bacterial Indicator Interpretation</u> The rapid method used in this survey for obtaining <u>E</u>. <u>coli</u> densities has been shown to give results equivalent to the IMViC method (APHA, 1985). Since the method involves a reaction in the confirmatory media tubes used to obtain the final FC density values, a direct comparison can be made between the FC densities and the <u>E</u>. <u>coli</u> densities. A review of the individual values for FC and <u>E</u>. <u>coli</u> (code: ECMUG) in the Appendix shows that over 99 percent of the FC found in the survey were <u>E</u>. <u>coli</u>. This supports the conclusion that the source of coliform to the bay is predominantly warm-blooded animal feces.

Since the <u>E</u>. <u>coli</u> determination alone fails to separate human versus other warm-blooded animal sources, the positive FS isolates were subjected to biochemical differentiation by a recommended method (EPA 1978) to help determine their public health significance. Thus, if <u>S</u>. <u>bovis</u> and/or <u>S</u>. <u>equinus</u> predominate, the source is recent animal, whereas, if typical <u>S</u>. <u>faecalis</u> is found, the source is most likely to be human feces. For the survey as a whole 60 samples were differentiated for FS. Of these, 54 samples, or 90 percent, contained FS species typical <u>S</u>. <u>faecalis</u> indicative of human fecal origin. In addition, these human-associated isolates were from widely distributed samples and were associated with sources having the highest indicator counts, particularly following rainfall. It should also be noted

that only one isolate in over 500 diferentiated was indicative of a recent non-human, warm-blooded animal source (\underline{S} . <u>bovis</u>). These findings support the conclusion that while there may be other non-human, warm-blooded animal pollution causing elevated indicator levels (FC and FS) in the bay there is clearly a significant portion (37 percent) derived from human sources. A complete description of this analysis is contained in a separate report (Chandler, 1987).

<u>Physical Data and Hydrographic Factors</u> The physical data taken during the survey period is presented for each station in the Appendix. The average surface and bottom salinities and temperatures for the bay stations are shown in Table 9.

> TABLE 9 BUTTERMILK BAY - BAY STATIONS SUMMARY OF PHYSICAL DATA AVERAGES

STA NO TTEMP BTEMP TSAL BSAL

B-01 [,]	12	22.3	21.7	32.5 32.9	
B-02	12	22.3	22.0	32.5 32.6	
B-03	12	22.1	22.0	32.5 32.6	
B-04	13	21.8	21.8	32.6 32.6	
B-04A	2	20.3	19.9	32.8 33.4	
B-04B	2	21.6	21.1	32.2 32.8	
B-05	5	23.3	23.1	31.9 32.2	
B-05A	8	22.3	22.3	12.7 27.7	
B-05B	2	23.3		25.9 .	
B-07	12	22.5	22.3	32.2 32.3	
B-10	12	22.9	22.4	31.9 32.2	
B-11	12	23.6	23.2	31.5 32.5	
B-12	12	23.2	22.7	32.0 32.6	
B-14	12	23.0	22.7	31.8 32.0	
B-15	14	23.6	23.4	31.3 32.2	
B -17	12	23.7	22.9	31.3 32.4	
B-19	12	24.1	23.7	30.4 31.3	
BS-CH9	1	21.3	20.9	33.7 33.8	
BS-RR	2	21.3	21.2	33.6 32.0	
BS-01	12	25.6	•	27.8.	
BS-02	12	24.6	•	25.5 .	
BS-03	13	25.2	•	27.9 .	
BS-04	13	25.0		23.6 .	

Temperatures ranged from lows of just over 19° C near the mouth of the bay to highs of 27.5°C in the shallow inner end of Little Buttermilk Bay on the warmest day. Salinities ranged from lows just over $20^{\circ}/_{\circ\circ}$ in Little Buttermilk Bay where there is reduced flushing of fresh water inputs to highs near $34^{\circ}/_{\circ\circ}$ just inside the mouth. Lower individual values such as at station B-05A and BS-04 were related to reduced mixing at these locations of higher stream input following rainfall.

Hydrographic studies employing drogues were done on July 11, 12, 15, 16 and 17 to determine the direction and approximate velocity of currents in various parts of the bay and how they affect distribution of pollution sources. In deeper areas cruciform droques consisting of one foot square sheet aluminum panels and half gallon plastic milk bottles were used. For shallow areas one quart plastic milk bottles alone were used. These were ballasted with sand to leave just the cap above the surface. The drogue tracks with days and times performed are shown in Figures 6 and 7. The flood tide studies of July 11 and 15, show that dilution water from Cohassett Narrows readily flows well into the center of the bay in about one and a half hours. Similarly, the ebb tide study of July 12 showed that flow from Little Buttermilk Bay out to the bay center occurs rapidly (less than three hours). This rapid exchange accounts for the ability of the bay to flush pollutants relatively quickly after a rainfall event. Conversely, the studies of Queen Sewell Cove on July 12 and the cove west of Hideaway Village on July 15 showed that these areas flush. very slowly. This serves to explain the elevated bacterial levels for samples in or near these locations. The studies on July 16 of Red Brook and the cove west of Hideaway Village showed that even on ebb tide a southwest wind can hold water from Red Brook and Hideaway Stream against the northern

shoreline and prevent it from mixing with central bay water. Conversely, the ebb tide study of July 17 showed that polluted water from both these sources can hug the western shore and flow southerly into the shallows of Miller Cove during northeast wind conditions. This finding explains the higher bacterial levels being more persistent along the western shoreline of the bay.

CONCLUSIONS

- Only the east central segment of Buttermilk Bay met the "approved" growing area criteria of the NSSP during this survey.
- 2. Rainfall records for the immediate area show that rainfall similar to the survey period is not unusual. Rainfall greater than approximately one half inch results in the runoff and activation of pollution sources which contaminate the bay to unacceptable levels for shellfish harvesting.
- 3. The portions of Buttermilk Bay most seriously affected by pollution resulting from rainfall are: Little Buttermilk Bay; the north shore of Buttermilk Bay; and the southwestern segment of Buttermilk Bay from Red Brook to the mouth of the bay.
- 4. Fecal coliforms found in bay waters, streams and other sources of pollution entering the bay were nearly 100 percent <u>Escherichia coli</u> and are therefore of high sanitary significance.
- 5. Fecal streptococci differentiation showed that 90 percent of the FS organisms were typical of warm-blooded animals not specifically human and

37 percent were of the most typical human specie. A large proportion of the bacterial pollution in the bay is, therefore, most probably from human sources and is of high sanitary significance.

- 6. Hydrographic studies showed that pollution sources entering the bay may be rapidly distributed by tidal action to shellfishing areas of the bay within a short time (less than one half tide cycle). Conversely, tide action also brings clean dilution water to mix and flush away pollution rapidly once a pollution event ceases. This occurs in all areas except the eastern part of Little Buttermilk Bay and Queen Sewell Cove.
- 7. The hazard level from human and animal waste inputs to the bay and their rapid distribution following periods of input indicate that strict adherence to shellfish harvesting standards and controls must be maintained.
- 8. Judging from improvement in water quality following the rainfalls of July 11th and 16-17th, the period for water quality to return to acceptable levels following a significant rainfall is approximately one day. Time for pollution clearance and shellfish purification is needed.
- 9. A "conditionally approved" management program for harvesting the shellfish resources in the bay when conditions meet the NSSP criteria could be developed. This would involve significant additional workload for establishing the necessary performance criteria and monitoring the area during periods open to harvest.

- 10. Shellfish resources of Buttermilk Bay could also be utilized by subjecting all shellstock to relaying or controlled purification (depuration) prior to marketing.
- 11. In the absence of the preceeding practice (9. or 10.), results of this survey plus those available from monitoring samples taken by Massachusetts personnel support the necessity for Buttermilk Bay to be placed in the "prohibited" of "restricted" classification in compliance with NSSP requirements.

REFERENCES

APHA 1970, Recommended Procedures for the Examination of Sea Water and Shellfish, Fourth Edition, American Public Health Association, Inc., New York.

APHA 1985, Standard Methods for the Examination of Water and Wastewater, Sixteenth Edition, American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, D.C.

EPA 1978, Microbiological Methods for Monitoring the Environment, R. Bordner, J. Winter and P. Scarpino (Eds.), Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

Rippey, S.R., Chandler, L.A., and Watkins, W.D. 1984, Development and Evaluation of a Rapid, Specific, Fluorometric Method for the Enumeration of <u>E</u>. <u>coli</u> in Molluscan Shellfish. Submitted for publication in Appl. Environ. Microbiol.

Velz, C.J. 1951, Graphical Approach to Statistics, University of Michigan, Reprinted from Water and Sewage Works.

Chandler, L.A. 1987, Characterization of the Types of Fecal Pollution Impacting a Shellfishing Estuary using Fecal Streptococci, NTSU, DHHS, PHS, FDA, Manuscript under preparation.

APPENDIX

3 why 1985

												,	0	
					1	ł				$< V \sim$	(for	e te 25	mp	
						eet	TTEM	p= t	000		ter	R	calin	ity
	APPE	NDIX					-1)01	NP ~	Bott	ow	surf	ece.	77c	(2)
	BUTTI	ERMIL	K BAY				157 0	AL 7	40	Brin	-sa	dep	n's	~ //
	BAY	STATIO	DNS - F	RAW DAT	ΓA	\	1	ZSAL	- P	5 = W	ter	X	tol	(m
0	STA=I	3-01	TTEMP	DIEND	TCA	DENI	TEDTH	Σ΄ D	EC	ECMUC	T'	C // ``	Col120	0
5	-DATE	HIME 4	4 4	4 4	4 22 0	4 22 0	3	110	18	8	6		82'	al for
/	708 708	850 1337	20.0	20.0	33.0	33.0	4 7	7.8	2.0	2.0	•	fl'	/ (5. coli
	709 709	847 1335	20.8 22.7	20.6 21.7	33.0 33.2	33.0 33.5	4	4.5	2.0	2.0	•		, m W	MUL
	710 711	911 954	22.5 23.4	21.6 22.9	32.7 32.9	33.5 33.3	5 4	11.0 23.0	2.0 13.0	2.0 13.0	·2	Ķ	~~~	Me (proc)
	712 715	1100 1152	24.5 21.9	23.4 21.6	31.6 33.2	33.2 33.2	5 4	2.0 11.0	7.8	4.5	•			
	716 717	1348 1429	21.2	21.2	32.0 30,3	33.1 30.5	3 3	230.0 180.0	79.0 38.0	79.0 38.0	•			· · col
	718 719	1415 1528	22.5	22.5 23.0	31.9 33.4	31.9 33.1	· 4 3	33.0 2.0	4.0 1.0	4.0 1.0	•	1	661	re pp-
													\$	DCC1
	STA= DATE	B-02 TIME	ттемр	BTEMP	TSAL	BSAL	DEPTH	тс	FC	ECMUG	FS			C
41	1708	840	21.4	20.9	32.6	32.8	10	23.0	4.5	2.0	1			
1918	708	1332 836	19.8	19.4	33.8	33.6	13 10	4.0	4.0 1.0	4.0 1.0	•			
En 1	709	1328	20.3	20.1	33.6	33.6	12 10	1.8	1.8	1.8	•			
0 -	> 711	950 1055	23.5	23.0	32.4	32.7	10 10	130.0	6.8	6.8 4.0	1			
2	715	1146	23.1	23.0	32.7	32.6	11	23.0	4.5	4.5	•			
0 -	, 717	1427	22.7	22.7	30.2	30.0	10	170.0	79.0	79.0	•			
12	718	1523	23.0	22.9	33.1	33.2	10	4.5	2.0	2.0	•			
	CTA I	0.00												
	DATE	TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	TC	FC	ECMUG	FS			
	708	834	21.2	21.1	32.7	33.0	9 12	13.0	7.8	4.5	4.5			
	708	830	21.1	20.9	32.7	32.9	9 10	4.5	1.0	1.0	•		-	
	710	859	22.4	22.2	33.0	33.2	10	9.3	4.0	4.0	• • 8	•		
	712	1053	23.1	23.7	31.9	32.0	10	4.5	4.5	4.5	•			
	715 716	1141 1338	22.7	22.8	32.7	32.8	10 8	49.0	11.0	11.0	•			
	717 718	1421 1406	22.5	22.5	30.1 31.9	30.1 32.0	10 9	13.0	49.0	49.0	•			
	719	1519	23.3	23.0	32.7	32.9	8	4.0	4.0	4.0	•			

BUTTERMILK BAY

BAY STATIONS - RAW DATA

STA=E	3-04									
DATE	TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	ТС	FC	ECMUG	FS
708	823	21.0	21.1	32.7	32.8	8	46.0	17.0	7.8	2.0
708	1322	20.0	19.5	33.6	33.6	10	·490.0	490.0	170.0	•
709	824	21.0	21.1	32.8	32.8	8	4.5	4.5	2.0	•
709	1312	20.9	20.6	33.6	33.6	9	33.0	33.0	33.0	•
710	853	22.1	22.2	33.2	33.2	8	110.0	23.0	21.0	
711	940	23.2	23.2	32.8	32.8	8	49.0	13.0	13.0	2.0
712	1048	23.6	23.8	31.9	31.9	8	33.0	7.8	7.8	•
715	1135	22.4	22.3	33.1	33.1	9	23.0	23.0	23.0	6.8
716	1332	22.6	22.6	32.3	32.2	8	46.0	13.0	13.0	•
717	956	19.3	19.4	32.9	33.1	9	230.0	79.0	49.0	•
717	1412	22.4	22.4	30.5	30.4	6	130.0	79.0	79.0	1.0
718	1401	22.0	22.2	32.0	31.9	6	4.0	4.0	4.0	1.0
719	1512	23.0	23.0	32.9	32.9	. 7	13.0	7.8	7.8	1.0

STA=B-04A

DATE	TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	TC	FC	ECMUG	FS
716	908	20.7	20.4	33.5	33.6	17	49	17	6.8	4.5
/1/	958	19.9	19.9	32.1	33.2	18	130	49	49.0	•

STA=B-04B

DATE	TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	TC	FC	ECMUG	FS
715	1515	23.0	22.8	32.8	32.9	5	70	33	33	•
717	1000	20.2	19.5	31.7	32.7	5	490	170	130	•

STA=B-05

DATE	TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	TC	FC	ECMUG	FS
700	010		01 7		20 E	2	120	1 0	1	1
708	918	•	21./	•	32.0	3	130	1.8	1	T
708	1353	22.1	21.9	33.2	33.1	5	13	1.0	1	•
709	909	22.5	22.5	31.6	32.0	2	79	1.0	1	1
709	1350	22.8	23.1	33.0	32.9	5	11	2.0	2	•
710	921	•	23.2	•	31.8	2	27	2.0	2	•
711	1007	24.6	24.6	31.3	31.3	3	230	13.0	13	2
712	1110	24.7	24.8	30.6	31.6	3	22	2.0	1	•

BUTTERMILK BAY BAY STATIONS - RAW DATA

STA=E DATE	3-05A TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	TC	FC	ECMUG	FS	
711 715 716 716 717 717 717 718 719	1012 1210 924 1405 1016 1448 1438 1545	24.1 19.7 20.0 21.9 20.7 24.3 22.7 25.3	24.1 22.9 23.3 19.8 23.9 20.1	9.3 11.0 4.1 19.4 6.9 30.8 12.7 7.6	9.3 32.2 30.8 32.1 31.7 30.4	3 2 4 3 1 2 2	2400 1700 16000 490 2200 2200 2200 790 330	170 330 1200 130 1100 350 170 330	110 330 1200 130 1100 350 170 330	79 130 220 49 230 17 79	
STA=E DATE	8-05B TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	тс	;	FC E	CMUG	FS
716 716	1415 1417	23.3 23.3	•	25.9 25.9	•	0 0	92000 92000) 540) 2400	000 54 000 24	4000 0000	5400
STA=E DATE	8-07 TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	тс	FC	ECMUG	FS	
708 709 709 710 711 712 715 716 717 718 719	900 1341 858 1340 916 958 1105 1157 1354 1437 1422 1532	21.3 19.4 22.0 20.2 22.8 23.9 24.1 23.8 23.5 22.8 23.5 22.8 23.4	21.4 19.2 22.0 20.2 22.8 23.8 23.9 23.2 22.7 22.8 22.7 22.8 22.3 23.4	32.6 33.8 32.5 33.8 32.7 32.2 31.9 32.3 31.4 29.7 31.6 32.2	32.6 33.9 32.5 33.7 32.8 32.2 32.1 32.4 32.0 29.8 31.6 32.3	7 9 6 8 5 5 5 5 4 5 6 5	$ \begin{array}{r} 17.0\\ 17.0\\ 6.8\\ 4.0\\ 6.8\\ 23.0\\ 2.0\\ 49.0\\ 130.0\\ 490.0\\ 2.0\\ 2.0\\ 2.0\end{array} $	1.0 17.0 1.8 2.0 2.0 4.5 2.0 7.8 23.0 70.0 1.0 2.0	1.0 17.0 1.8 2.0 2.0 4.5 2.0 7.8 23.0 70.0 1.0 2.0	1	
STA=B DATE	8-10 TIME	ттемр	BTEMP	TSAL	BSAL	DEPTH	тс	FC	ECMUG	FS	
708 709 709 710 711 712 715 716 717 718 719	907 1348 903 1344 936 1001 1108 1201 1358 1439 1426 1535	21.7 19.6 22.3 20.9 23.1 24.5 25.0 24.0 23.6 23.2 22.8 23.8	21.5 19.2 21.9 20.3 22.9 23.9 24.1 23.8 23.1 22.9 22.5 23.2	32.3 33.8 32.1 33.6 32.8 32.0 31.2 31.9 31.0 29.0 30.8 32.2	32.5 33.8 32.5 33.8 32.9 32.2 31.9 32.2 31.9 29.3 31.4 32.4	5 8 6 9 7 5 6 5 7 5 6 7	4.0 49.0 4.5 21.0 23.0 7.8 17.0 130.0 330.0 2.0 2.0	1.0 49.0 4.5 9.2 1.0 2.0 2.0 4.5 4.5 79.0 2.0 1.8	1.0 11.0 4.5 9.2 1.0 2.0 4.5 2.0 4.5 79.0 2.0 1.8	2	

.

BUTTERMILK BAY BAY STATIONS - RAW DATA

 $4_{\rm c}$

STA=B DATE	3-11 TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH		тс	FC E	CMUG	FS
708 709 709 710 711 712 715 716 717 718 719	925 1356 916 1353 929 1019 1115 1218 1430 1459 1450 1555	22.2 22.8 23.8 23.5 24.5 25.4 24.6 23.3 23.5 22.6 24.1	22.0 22.4 22.6 23.8 23.2 24.3 24.6 24.2 22.7 22.5 22.4 23.7	33.0 32.4 33.0 32.3 31.5 30.9 31.5 26.2 30.3 31.9 31.5	33.1 32.8 33.0 32.9 32.2 32.6 32.2 32.3 31.1 32.3 32.4	586765555555	2 4 13 950 4 16000 230 1 2	2.0 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	1.0 2.0 1.0 2.0 2.0 2.0 2.0 4.5 30.0 3 79.0 1.0 1.0	$ \begin{array}{c} 1.0\\2.0\\1.0\\2.0\\2.0\\4.5\\30.0\\79.0\\1.0\\1.0\end{array} $	1
STA=E DATE	3-12 TIME	ттемр	BTEMP	TSAL	BSAL	DEPTH	TC	FC	ECMUG	i FS	
708 709 709 710 711 712 715 716 717 718 719	930 1401 921 1353 933 1023 1120 1221 1435 1503 1453 1558	21.8 22.1 22.7 22.5 23.2 24.3 25.5 23.4 23.3 23.0 22.8 23.5	21.0 22.1 21.6 22.6 23.3 23.1 24.5 23.3 22.4 23.1 22.8 22.4	32.3 33.2 31.6 33.2 32.5 32.0 31.7 32.4 31.0 29.9 31.6 32.5	33.6 33.2 33.1 32.6 32.7 32.8 32.7 33.0 29.9 31.4 33.3	5 8 6 8 6 5 5 5 4 4 5	$1.0 \\ 17.0 \\ 1.0 \\ 11.0 \\ 4.5 \\ 4.5 \\ 1.0 \\ 6.8 \\ 49.0 \\ 31.0 \\ $	1.0 4.5 1.0 2.0 4.5 1.0 1.0 4.5 4.5 17.0 1.0 1.0	1.0 4.5 1.0 1.0 4.5 1.0 1.0 2.0 4.5 6.8 1.0 1.0		
STA=E DATE	3-14 TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	тс	FC	ECMUG	à FS	
708 709 709 710 711 712 715 716 717 718 719	933 1406 926 1400 942 1026 1122 1225 1437 1511 1500 1601	21.8 20.0 22.7 21.7 23.1 24.6 24.9 24.2 23.6 23.1 22.8 24.1	21.6 19.5 22.5 20.6 22.9 24.5 24.5 23.9 23.3 23.0 22.5 24.1	32.5 33.8 31.8 33.3 32.8 31.4 31.7 31.6 30.1 29.7 31.4 32.0	32.4 33.8 32.1 33.7 32.8 31.7 31.8 31.7 31.2 29.7 31.4 32.0	4 7 6 6 4 4 4 4 4 4 4	7.8 33.0 1.0 17.0 13.0 17.0 11.0 27.0 46.0 79.0 1.8 4.5	$\begin{array}{c} 2.0\\ 33.0\\ 1.0\\ 17.0\\ 4.5\\ 4.0\\ 4.5\\ 4.5\\ 14.0\\ 33.0\\ 1.0\\ 4.5\end{array}$	2.0 17.0 17.0 4.5 4.0 2.0 4.5 6.1 33.0 1.0 4.5		

.

BUTTERMILK BAY BAY STATIONS - RAW DATA

STA=E	3-15 TIMF	TTEMP	RTFMP	τςδι	BSAI	DEPTH	тс	FC	FCMUG	FS
JAG	1111			10/10	00.1	C C	10			10
708 708	950 1420	22.0	22.3	32.5	33.1	ь 8	2	2.0	2.0	1.0
709 709	941 1415	22.4	22.7	31.7 32 4	32.7	6 9	1	1.0	1.0	•
710	955	23.7	23.8	31.7	32.0	7	•	•	•	•
711 712	1036 1130	24.5 25.7	24.6 25.7	30.0	32.4	6 6	220	14.0	14.0	1.0
715	1236	24.3	24.2	31.8	31.7	6	17	2.0	2.0	4.0
/16 716	933 1450	23.8	23.1	29.6	32.4	8 4	49 460	1/.0	1/.0	49.0
717	1025	22.4	22.5	30.2	31.7	7	700	130.0	130.0	2.0
717	1538	24.2	22.0	31.8	32.7	5 5	1	49.0	49.0	1.0
719	1613	23.7	23.8	32.1	32.2	5	2	2.0	2.0	1.0
STA=E	3-17	TTEND	DTEND	TCAL	DCAL	DEDTU	т	~ 1		
DATE	TIME	TIEMP	BIEMP	ISAL	BSAL	DEPTH	1	C I	-C ECMI	JG FS
708 708	940 1412	22.4	22.3	31.7	32.9	6	2.	02	.0 2	.01
709	931	22.8	22.1	31.7	32.7	6	1.	0 1	.0 1	.0.
709 710	1405 946	23.1	23.1	32.9	32.9	8 6	2. 4.	02	.02. .04.	.0.
711	1029	24.9	24.6	30.9	32.0	6	17.	0 4	.5 4	.5 2
715	1230	25.4	24.5	31.2	31.2	6	14.	0 2	.0 2	.0.
716 717	1440	23.2	23.2	29.0	31.4	5 5	33. 490	$ \begin{array}{ccc} 0 & 13 \\ 0 & 130 \end{array} $.0 13	.0.
718	1505	23.9	21.1	30.7	32.6	6	1.	0 1	.0 1	.0.
719	1606	24.2	24.2	31.5	32.2	6	2.	0 2	.0 2	.0.
STA=B	3-19 TIMF	ТТЕМР	RTEMP	τςδι	BSAI	DEDTH	Т	C F	C FCMU	G FS
700	0.40			21 0	20.12	<i>c</i>		0 1		- 1
708	943 1416	22.0	22.0	32.6	32.2	9	4.	5 4.	5 4.9	5.
709	935 1410	23.1	22.6	30.9	32.3	7 9	6.	8 1.0).]
710	950	24.0	24.0	31.2	31.3	5	7.	8 1.0		5.
711 712	1033 1128	24.8 25.4	24.6 25.7	29.9	30.0	4 7	22. 6.	02.0 82.0	0 2.0 0 2.0	
715	1233	24.5	24.4	30.2	30.2	6	22.	0 4.	5 4.9	5.
715 717	1443	23.3	22.7	28.4	28.8	4 5	17.	0 13.0	0 13.0	j.
718	1510	24.5	22.0 24 9	29.8	31.9	6 6	1.	$ \begin{array}{c} 0 \\ 0 \\ 2 \end{array} $	1.0) .
1 1 2	1000		LT • J	00.0	00.0	0		U L.	J (•

.

	BUTTE BAY	ERMIL! STATIO	K BAY DNS – I	RAW DAT	ΓA								
	STA=E DATE	BS-CH9 TIME	9 TTEMP	BTEMP	TSAL	BSAL	DEPTH	TC FC	ECMUG	FS			
	719	1109	21.3	20.9	33.7	33.8	13	22	2	1			
	STA=8 DATE	BS-RR TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	TC	FC E	CMUG	FS	· ()	for
	710 719	1511 1115	21.7 21.0	21.3 21.1	33.6 33.6	30.3 33.7	15 17	4.5 13.0 1	4.5 13.0	4.5 13.0	4.5	de	PIL
	STA=8 DATE	BS-01 TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	тс	FC	ECMUG	G FS	2	ne sus
	708 709 709 710 711 712 715 716 717 717 718 719	855 1343 840 1340 945 925 1055 1417 1351 1034 1433 1418 1528	27.0 23.5 27.0 25.5 26.2 27.2 25.0 23.5 23.0 26.0 26.2 27.0	• • • • • • • • • • • • •	29.7 29.1 28.8 29.0 28.4 28.5 28.2 27.6 24.4 24.7 26.9 28.5	· · · · · · · · · · · · · · · · · · ·	0 0 0 0 0 0 0 0 0 0 0 0	11.0 1.0 7.8 4.5 11.0 12.0 2.0 17.0 14.0 170.0 26.0 49.0	7.8 1.0 4.5 4.5 6.8 4.5 11.0 70.0 14.0 22.0	7.8 1.0 4.5 4.5 6.8 4.5 11.0 70.0 14.0 22.0	1.0 1.0 1.0 		Null
•	STA=E DATE	3S-02 TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	тс	FC	ECML	JG FS		
	708 709 709 710 711 712 715 716 717 717 718 719	915 1415 920 1405 1015 1010 1114 1458 1320 1050 1530 1445 1555	24.0 22.5 25.8 25.0 24.5 26.0 23.0 23.5 22.5 26.5 25.8 26.0		26.9 25.6 28.9 26.4 21.2 25.0 26.8 20.4 25.6 23.8 28.8 28.8 26.8	· · · ·	0 0 0 0 0 0 0 0 0 0 0 0	6.1 1700.0 14.0 250.0 330.0 17.0 490.0 79.0 23.0 330.0	$ \begin{array}{c} 1 & 1.0 \\ 0 & 46.0 \\ 0 & 9.3 \\ 0 & 70.0 \\ 0 & 26.0 \\ 0 & 14.0 \\ 0 & 7.8 \\ 0 & 2.0 \\ 0 & 49.0 \\ 0 & 13.0 \\ 0 & 33.0 \\ \end{array} $	$\begin{array}{c} 1.0\\ 21.0\\ 3.9.3\\ 9.3\\ 0.49.0\\ 0.21.0\\ 0.14.0\\ 3.7.8\\ 0.2.0\\ 14.0\\ 0.14.0\\ 0.13.0\\ 0.33.0\end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	

30

transfer to star

BUTT	ERMILK	BAY			
BAY	STATION	IS -	RAW	DATA	

STA=B	S-03									
DATE	TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	TC	FC	ECMUG	FS
							•			
708	1315	25.5	•	29.0	•	0	6.8	6.8	6.8	2
709	825	23.0	•	29.8	•	0	2.0	2.0	2.0	1
709	1330	27.0	•	29.9	•	0	1.0	1.0	1.0	•
710	925	24.5	•	26.7	•	0	12.0	4.5	4.5	•
711	915	25.0	•	29.3	•	0	49.0	11.0	6.8	2
712	1044	27.0	•	28.0	•	0	7.8	7.8	7.8	•
715	1400	25.5	•	29.0	•	0	2.0	1.0	1.0	•
716	905	24.0	•	28.1	•	0	5400.0	3500.0	3500.0	•
716	1358	24.0	•	25.1	•	0	490.0	70.0	70.0	•
717	1015	23.0	•	25.6	•	0	1300.0	490.0	490.0	•
717	1411	26.0	•	25.5	•	0	490.0	110.0	110.0	•
718	1406	27.4	•	27.6	•	0	130.0	79.0	49.0	79
719	1505	26.0	•	29.4	•	0	7.8	4.5	2.0	•
STA=B	S-04									

DATE	TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	TC	FC	ECMUG	FS
708	1355	24.5		24.4		0	49	4.5	4.5	2.0
709	900	22.8	•	27.1	•	0	17	7.8	7.8	2.0
709	1352	26.0	•	26.0	•	0	1	1.0	1.0	
710	1000	25.0	•	26.4	•	0	22	17.0	17.0	•
711	945	26.0	•	27.3	•	0	330	79.0	79.0	9.3
712	1105	27.5	•	26.9	•	0	79	33.0	33.0	•
715	1438	25.0	•	23.8	•	0	790	130.0	130.0	17.0
716	915	23.0	•	21.6	•	0	230	33.0	33.0	•
716	1335	23.8	•	25.2	•	0	1400	170.0	170.0	•
717	1040	22.8	•	24.4	•	0	490	110.0	70.0	•
717	1453	26.0	•	10.2	•	0	5400	330.0	330.0	•
718	1430	26.5	•	14.6	•	0	79	4.5	4.5	•
719	1541	26.5	•	28.4	•	0	46	7.8	7.8	•

-

BUTTERMILK BAY STREAM STATIONS - RAW DATA STA=CBOG DATE TIME TTEMP BTEMP TSAL BSAL DEPTH TC FC ECMUG FS 708 280 23 23 49 937 0 708 1430 25.5 0.3 0 ٠ 1045 24.0 · 700 170 710 1.3 0 170 • • . 0.6 1015 23.8 1100 49 711 0 49 22 • 715 1510 24.0 0.3 0 1100 46 33 490 STA=CPTH DATE TIME TTEMP BTEMP TSAL BSAL DEPTH TC FC ECMUG FS 708 1025 0 9200 700 79 170 ٠ ٠ 31.1 709 1010 21.5 0 ٠ ٠ 0 2400 230 230 790 711 1045 23.5 31.1 • ٠ STA=ELECAV DATE TIME TTEMP BTEMP TSAL BSAL DEPTH TC FC ECMUG FS 710 1504 21.4 21.4 33.8 33.8 7 23 7.8 7.8 . STA=HDWYST DATE TIME TTEMP BTEMP TSAL BSAL DEPTH TC FC ECMUG FS 708 5400 955 0 79 49 21 935 21.5 3 709 1.2 16000 2400 2400 2200 • 110 710 1055 24.0 1.9 0 17000 110 ٠ 711 1020 24.0 2200 220 220 490 0.8 0 • . 715 1527 23.5 0.4 0 16000 1700 1700 • 930 22.5 716 0.7 0 9200 490 220 ٠ 1300 23.0 17000 3500 716 0.6 0 3500 • 1120 22.3 717 0.4 7900 490 490 0 ٠ 718 1456 28.5 0.7 0 1700 130 130 130 STA=LBR1 TC FC ECMUG FS DATE TIME TTEMP BTEMP TSAL BSAL DEPTH 710 1351 70 13 0 13 24.7 717 1100 23 0 1100 330 330

710 1408 0 ·790 11 11 • • • • • STA=LILPD DATE TIME TTEMP BTEMP TSAL BSAL DEPTH TC FC ECMUG FS 711 1445 0 790 6.1 6.1 2 STA=MKPCIN DATE TIME TTEMP BTEMP TSAL BSAL DEPTH TC FC ECMUG FS 715 1140 24.5 79 13 13.0 4.5 0.4 0 • ٠ 31 2 4.5 716 1023 24.5 1.7 0 • • STA=MKPCOT DATE TIME TTEMP BTEMP TSAL BSAL DEPTH TC FC ECMUG FS 716 1048 23.5 0.2 170 33 33 • • 0 11 STA=MRSHDR DATE TIME TTEMP BTEMP TSAL BSAL DEPTH TC FC ECMUG FS 717 1500 26.1 . 2.4 . 0 1300 790 790 1300 STA=OHBC DATE TIME TTEMP BTEMP TSAL BSAL DEPTH TC FC ECMUG FS 708 0 490 23 23 22 922 709 900 12.5 0.0 0 . . 33 1020 15.0 1100 33 710 0.3 0 • 1000 14.5 950 70 49 330 711 0.0 0 • . . 1452 14.5 715 0.5 0 1100 70 70 ٠ ٠ 717 1525 15.5 0.5 0 1100 490 490 490 . •

DATE TIME TTEMP BTEMP TSAL BSAL DEPTH TC FC ECMUG FS

BUTTERMILK BAY STREAM STATIONS - RAW DATA

STA=LBR2

33

÷

	711	1425	28	•	10.2	•	0	·170	11 1	11 2	
	STA=F DATE	RDBR TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	TC	FC	ECMUG	FS
	708 709 710 711 715 716 717 718	1012 1000 1120 1030 1535 943 1130 1514	15.5 19.5 18.8 19.0 18.0 19.0 21.5	• • • •	0.0 0.4 1.3 0.3 0.7 0.2 0.2	• • • • •	0 0 0 0 0 0 0	220 49 790 1400 790 2200 79	31 17 490 110 330 460 22	31 17 490 110 330 460 14	46 220 170 13
	STA=F DATE	RDBRF1 TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	TC	FC EC	CMUG F	S
	710	1410	18	•	0	•	0	220	26 2	26.	
	STA=R DATE 716	RDBRGF TIME 1102	ттемр 23	BTEMP	TSAL •	BSAL •	DEPTH O	TC 1 350 1	FC E 7.8	ECMUG 7.8	FS •
STA=RDBR495 DATE TIME TTEMP BTEMP TSAL BSAL DEPTH TC FC ECMUG FS											
	715	1030	18.5	•	0.8	•	0	49 13	3 13	3 13	0
	STA=₩ DATE	HTIP TIME	TTEMP	BTEMP	TSAL	BSAL	DEPTH	TC F	C EC	CMUG F	S
	715	1135	24.5		0.4	•	0	23 4	.5	2 1	7

.

DATE TIME TTEMP BTEMP TSAL BSAL DEPTH TC FC ECMUG FS

BUTTERMILK BAY STREAM STATIONS - RAW DATA

STA=OHBCMO